



# THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA Screening Test - Bhaskara Contest

NMTC at JUNIOR LEVEL - IX & X Standards

# Saturday, 31 August, 2019

## Note:

- 1. Fill in the response sheet with your Name, Class and the institution through which you appear in the specified places.
- Diagrams are only visual aids; they are NOT drawn to scale. 2.
- 3. You are free to do rough work on separate sheets.
- 4. Duration of the test: 2 hours.

# PART—A

### Note

Only one of the choices A. B, C, D is correct for each question. Shade the alphabet of your choice in the response sheet. If you have any doubt in the method of answering; seek the guidance of the supervisor.

For each correct response you get 1 mark. For each incorrect response you lose  $\frac{1}{2}$  mark.

1. The number of 6 digit numbers of the form "ABCABC", which are divisible by 13, where A, B and C are distinct digits, A and C being even digits is (A) 200 (B) 250 (C) 160 (D) 128

А

Sol. (D)

> 1001 × ABC = ABCABC where 1001 = 13 × 7 × 11 Now A and C are even digits and A, B, C are different digits

Case-I: When C is zero ۸ 

| А   | D     | U     | ,    |
|-----|-------|-------|------|
|     |       | 0     | 1    |
|     |       | ľ     |      |
| +   | +     | +     |      |
| 4 > | < 8 > | < 1 = | = 32 |
|     |       |       |      |

Total number of 6 digits Option (D).

 $4 \times 8 \times 3 = 96$ Number possible = 32 + 96 = 128

Case-II : When C is not zero

 $\overline{\mathbf{0}}$ 

В С

2. In  $\triangle ABC$ , the medians through B and C are perpendicular. Then  $b^2 + c^2$  is equal to

(A) 
$$2a^2$$
 (B)  $3a^2$  (C)  $4a^2$  (D)  $5a^2$   
Sol. (D)  
Let BG = 2x, GE = x





CG = 2y, GF = y In  $\triangle \text{GCE}$ 

$$(2y)^{2} + x^{2} = \left(\frac{b}{2}\right)^{2}$$
  
 $4y^{2} + x^{2} = \frac{b^{2}}{4}$  .....(i)

In ∆BCG

$$(2x)^{2} + y^{2} = \left(\frac{c}{2}\right)^{2}$$
  
 $4x^{2} + y^{2} = \frac{c^{2}}{4}$  .....(ii)

In ∆BGE

$$(2x)^{2} + (2y)^{2} = a^{2}$$
  
 $4(x^{2} + y^{2}) = a^{2}$   
 $x^{2} + y^{2} = \frac{a^{2}}{4}$  .....(iii)

Equation (i) + (ii)

$$5x^{2} + 5y^{2} = \frac{b^{2} + c^{2}}{4}$$
$$5(x^{2} = y^{2}) = \frac{b^{2} + c^{2}}{4}$$

from equation (iii)

$$5\left(\frac{a^2}{4}\right) = \frac{b^2 + c^2}{4} \qquad \Rightarrow \qquad b^2 + c^2 = 5a^2$$

Option (D).

3. In a quadrilateral ABCD, AB = AD = 10, BD = 12, CB = CD = 13. Then (A) ABCD is a cyclic quadrilateral (B) ABCD has an in-circle (C) ABCD has both circum-circle and in-circle (D) It has neither a circum-circle nor an in-circle (B)

Sol.







 $CM = \sqrt{13^2 - 6^2} = \sqrt{133}$ For incircle AB + DC = AD + BC23 = 23In circle is possible for cyclic quadrilateral (circumcircle) theorem should be followed.  $AC \times BD = AB \cdot CD + BC \cdot AD$  $(8 + \sqrt{133}) \times 12 \neq 10 \times 13 + 10 \times 13$ It is not a cyclic quadrilateral Option (B). 4. Given three cubes with integer side lengths, if the sum of the surface areas of the three cubes is 498 sq. cm, then the sum of the volumes of the cubes in all possible solutions is (A) 731 (B) 495 (C) 1226 (D) None of these Sol. (C)  $6(x^2 + y^2 + z^2) = 498$  $x^2 + y^2 + z^2 = 83$ for x, y, z to be integer  $x = \sqrt{49}$ ,  $y = \sqrt{25}$ ,  $z = \sqrt{9}$ x = 7, y = 5, z = 3Sum of volumes =  $7^3 + 5^3 + 3^3$ 343 + 125 + 27 = 495  $\Rightarrow$ for x, y, z to be integer  $x = \sqrt{81}, y = \sqrt{11}, z = \sqrt{1}$ x = 9, y = 1, z = 1Sum of volumes =  $9^3 + 1^3 + 1^3$ = 729 + 1 + 1 = 731.So, total sum = 495 + 731 = 1226 Option (C). 5. In a rhombus of side length 5, the length of one of the diagonals is at least 6, and the length of the other diagonal is at most 6. What is the maximum value of the sum of the diagonals ? (A) 10√2 (C) 5√6 (B) 14 (D) 12 Sol. (B) Let diagonal are 2x and 2y D А 5  $x^2 + y^2 = 25$ We have to find  $2(x + y)_{max} = ?$  $2x \geq 6$  $2y \leq 6$  $x \ge 3$  $v \le 3$ By option (A)  $2(x + y) = 10\sqrt{2}$  $x^2 + y^2 = 25$ from here we get x = y =  $\frac{5}{\sqrt{2}}$  it is not possible.  $2y = 7.070 \ge 6.$ Resonance® Educating for better tomorrow NMTC\_STAGE-I \_ 31 AUGUST 2019\_JUNIOR\_PAGE # 3

By option (B) 2(x + y) = 14  $x^2 + y^2 = 25$  2y = 6 and 2x = 8it is possible maximum value which is greater by other two options.

- 6. In the sequence 1, 4, 8, 10, 16, 21, 25, 30 and 43, the number of blocks of consecutive terms whose sums are divisible by 11 is
- (A) only one (B) exactly two (C) exactly three (D) exactly four **Sol.** (D)

$$1 \underbrace{4 \\ 8 \\ 10 \\ 16 \\ 21 \\ 25 \\ 30 \\ 43$$

$$4 + 8 + 10 = 22$$

$$8 + 10 + 16 + 21 = 55$$

$$8 + 10 + 16 + 21 + 25 + 30 = 110$$

$$25 + 30 = 55$$
Option (D).

**7.** Let A = {1, 2, 3,...., 17}. For every nonempty subset B of A find the product of the reciprocals of the members of B. The sum of all such product is

(A) 
$$\frac{153}{17!}$$
 (B)  $\frac{153}{\text{lcm}(1, 2, ...., 17)}$  (C) 18 (D) 17

$$\begin{pmatrix} \frac{1}{1} + \frac{1}{2} \dots \frac{1}{17} \end{pmatrix} + \begin{pmatrix} \frac{1}{1 \times 2} + \frac{1}{1 \times 3} \end{pmatrix} + \dots \begin{pmatrix} \frac{1}{1 \times 2 \times 3 \dots 17} \end{pmatrix}$$

$$= \frac{(1 + 2 + 3 \dots 17) + (1 \times 2 + 1 \times 3 + \dots) \dots + (1 \times 2 \dots 16) + 1}{1 \times 2 \times 3 \dots 17}$$

$$= \frac{\Sigma 1 + \Sigma 1.2 + \Sigma 1.2.3 + \dots + \Sigma 1.2 \dots 16 + 1}{1 \times 2 \times 3 \dots 17}$$

$$= \frac{(1 + 1)(1 + 2)(1 + 3) \dots (1 + 17) - (1 \times 2 \dots 17)}{1 \times 2 \times 3 \dots 17}$$

$$= \frac{1.2 \cdot 3 \dots 18 - 1.2 \cdot 3 \dots 17}{1 \times 2 \times 3 \dots 17} = \frac{17!(18 - 1)}{17!} = 17.$$

8. The remainder of  $f(x) = x^{100} + x^{50} + x^{10} + x^2 - 6$  when divided by  $x^2 - 1$  is (A) x + 1 (B) - 2 (C) 0 (D) 2

### Sol. (B)

Let R(x) = Ax + B  $x^{100} + x^{50} + x^{10} + x^2 - 6 = q(x) (x^2 - 1) + Ax + B$  x = 1 1 + 1 + 1 + 1 - 6 = A + B -2 = A + B ......(i) x = -1 1 + 1 + 1 + 1 - 6 = -A + B -2 = -A + B .....(ii) from equation (i) and (ii) -4 = 2B B = -2 A = 0 R(x) = -2Option (B).

人民

Resonance® Educating for better tomorrow

- **9.** The number of acute angled triangles whose vertices are chosen from the vertices of a rectangular box is
  - (A) 6 (B) 8 (C) 12 (D) 24
  - . (B) From each surface diagonals there are 4 triangles are possible which are equilateral of side  $\sqrt{2}a$



 $k > \frac{49}{16}$ 

Sol.

1 k > 3

So, 
$$\frac{m+n}{4} > 3$$
  
m + n > 12  
from options m + n = 16

# <u>Alternate :</u>

 $\frac{m+n}{m^2+mn+n^2} = \frac{4}{49}$  $\frac{m+n}{(m+n)^2-mn} = \frac{4}{49}$ m and n are positive integer mn > 0 from option a, b, c mn < 0 therefore m + n = 16.

**12.** Given a sheet of 16 stamps as shown, the number of ways of choosing three connected stamps (two adjacent stamps must have an edge in common) is

| (A) 40<br><b>(C)</b> | (B) 41 |  | (C) | 42 | (D) 44 |
|----------------------|--------|--|-----|----|--------|

Sol. (

In such block there are 4 such combination (1, 2, 3) (2, 3, 4) (3, 4, 1), (4, 1, 2)

So there 7 such blocks

So total combination =  $7 \times 4 = 28$ .

In such block there in 1 such combination.

There are 12 such block.

so total combination = 12.

(1, 2, 3), (4, 5, 6) are 2 more combination available.



So finally total combination = 28 + 12 + 2 = 42.

In an election 320 votes were cast for five candidates. The winner's margins over the other four candidates were 9, 13, 18 and 25. The lowest number of votes received by a candidate was
 (A) 49
 (B) 50
 (C) 51
 (D) 52

(A) 49 (B) 50 (C) 51 (D) Let winner get x votes other will get x - 9, x - 13, x - 18, x - 25 5x - 65 = 320  $5x \Rightarrow 385$   $x \Rightarrow 77$ Lowest number of votes = x - 25 = 77 - 25 = 52. Option (D).



Sol.

| 14.  | A competition h                                                                              | nas 25 questions and is m                     | arked as follows                                |                                                                                                                             |              |  |  |  |
|------|----------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|
|      | (a) Five marks are awarded for each correct answer to questions 1 to 15                      |                                               |                                                 |                                                                                                                             |              |  |  |  |
|      | (b) Six marks are awarded for each correct answer to questions 16 to 25                      |                                               |                                                 |                                                                                                                             |              |  |  |  |
|      | (c) Each incorrect answer to questions 16 to 20 loses 1 mark                                 |                                               |                                                 |                                                                                                                             |              |  |  |  |
|      | (s) Each incorr                                                                              | ect answer to questions 2                     | 1 to 25 loses 2 marks                           |                                                                                                                             |              |  |  |  |
|      | (Δ) 126                                                                                      | (B) 127                                       | (C) 128                                         | 129 (٦)                                                                                                                     |              |  |  |  |
| Sal  | (A) 120<br>(A)                                                                               |                                               | (0) 120                                         | (D) 123                                                                                                                     |              |  |  |  |
| 501. | ( <b>A</b> )<br>Totol morko <b>-</b> (                                                       | 195                                           |                                                 |                                                                                                                             |              |  |  |  |
|      |                                                                                              |                                               |                                                 |                                                                                                                             |              |  |  |  |
|      | 129 IS possible                                                                              | when he does not attem                        | pt one question of 6 ma                         | irks 128 is possible when he                                                                                                | e attempt    |  |  |  |
|      | wrongly one question of 6 of 6 mark with one negative mark.                                  |                                               |                                                 |                                                                                                                             |              |  |  |  |
|      | 127 is possible                                                                              | when he attempt wrongly                       | one question of 6 mark                          | with 2 negative mark.                                                                                                       |              |  |  |  |
|      | Option (A)                                                                                   |                                               |                                                 |                                                                                                                             |              |  |  |  |
| 15.  | A, M, T, I are positive integers such that A + M + T + I = 10. The maximum possible value of |                                               |                                                 |                                                                                                                             |              |  |  |  |
|      | A×M×T×I+<br>+T×Iis                                                                           | • A × M × T + A × M × I +                     | A × T × I + M × T × I + A                       | X × M + A × T + A × I + M × 1                                                                                               | T + M × I    |  |  |  |
|      | (A) 109                                                                                      | (B) 121                                       | (C) 133                                         | (D) 144                                                                                                                     |              |  |  |  |
| Sol. | (C)                                                                                          |                                               | (-)                                             |                                                                                                                             |              |  |  |  |
|      | A × M × T × I +                                                                              | $A \times M \times T + A \times M \times I +$ | A × T × I + M × T × I + A                       | $A \times M + A \times T + A \times I + M \times$                                                                           | T + M × I    |  |  |  |
|      | + T × I this exp                                                                             | ression is maximum if we                      | take A = M = 3 T = I = 2                        | <b>)</b>                                                                                                                    |              |  |  |  |
|      |                                                                                              | $A \times M \times T + A \times M \times I +$ | $A \times T \times I + M \times T \times I + A$ | $\mathbf{A} \times \mathbf{M} + \mathbf{A} \times \mathbf{T} + \mathbf{A} \times \mathbf{I} + \mathbf{M} \times \mathbf{I}$ | T + M × I    |  |  |  |
|      | $+ T \times I = (1 + \Delta)$                                                                | (1 + M)(1 + T)(1 + I) =                       | $1 - (\Delta + M + T + I)$                      |                                                                                                                             | 1 • 101 •• 1 |  |  |  |
|      | - (1 + 2) (1 + 2                                                                             | (1 + 0)(1 + 1)(1 + 1) = (1 + 0)(1 + 0)        | 1 – (A + M + 1 + 1)                             |                                                                                                                             |              |  |  |  |
|      | -(1+3)(1+3)(1+2)(1+2) = 1 - 10<br>- 144 - 11 - 122                                           |                                               |                                                 |                                                                                                                             |              |  |  |  |
|      | = 144 - 11 = 1                                                                               | -144 - 11 - 155.                              |                                                 |                                                                                                                             |              |  |  |  |
|      | Option (C).                                                                                  |                                               |                                                 |                                                                                                                             |              |  |  |  |

### PART - B

### Note :

- Write the correct answer in the space provided in the response sheet
- For each correct response you get 1 mark. For each incorrect response you lose  $\frac{1}{4}$  marks.
- The three digit number XYZ when divided by 8, gives as quotient the two digit number ZX and 16. remainder Y. The number XYZ is

#### Sol. (435)

xyz = 8(10z + x) + y100x + 10y + z = 80z + 8x + y92x + 9y = 79z9y = 79z - 92x9y = 72z + 7z - 90x - 2x $y = \frac{9(8z - 10x)}{9} + \frac{7z - 2x}{9}$ 7z – 2x should be multiple of 9 z = 5, x = 4, y = 3.xyz = 435.

17. The digit sum of any number is the sum of its digits. N is a 3 digit number. When the digit sum of N is subtracted from N, we obtain the square of the digit sum of N. The number N is \_\_\_\_\_\_

#### (156) Sol.

Let s be the sum of digit of N (3 digit number)

 $N - s = s^{2}$  $N = s^2 + s$ As maximum sum of 3 digit number is 27. so we put the value of s upto 27 and check. we observe if we put s = 12

 $N = 12^2 + 12 = 156$  is the required number.



18. A 4 × 4 anti-magic square is an arrangement of the numbers 1 to 16 in a square so that the totals of each of the four rows, four columns and the two diagonals are ten consecutive numbers in some order. The diagram shows an incomplete anti magic square. When it is completed, the number in the position of \* is \_\_\_\_\_

|    |    |    | 14 |
|----|----|----|----|
| *  | 9  | 3  | 7  |
|    | 12 | 13 | 5  |
| 10 | 11 | 6  | 4  |

#### Sol. (16)



C<sub>4</sub> sum = 30

R<sub>4</sub> sum = 31

 $D_1 sum = 39$ 

as the sum of 4 column, 4 row and 2 diagonal is 10 consecutive integer as C<sub>4</sub> sum is 30 and D<sub>1</sub> sum is 39.

27

*.*.. the ten sum from 30 to 39.

So the remaining sum left is 32 to 38 and number which is to filled 1, 2, 8, 15, 16 only.

[1]

2 28 Sum of  $D_2$  element 9 + 13 + 4 = 26 + 8 = 3415 41 16 42

*.*:. In D<sub>2</sub> we filled 8.

Sum of  $R_3$  element 12 + 13 + 5 = 30(1)  $(\mathbf{04})$ 

$$30 + \begin{cases} 1 \\ 2 \\ 15 \\ 16 \end{bmatrix} = \begin{cases} 31 \\ 32 \\ 45 \\ 46 \end{cases}$$

*:*. In R<sub>3</sub> we fill 2. Sum of C<sub>2</sub> element 9 + 12 + 11 = 32 33 1

$$32 + \begin{cases} 15 \\ 16 \end{cases} = \begin{cases} 47 \\ 48 \end{cases}$$

In C<sub>2</sub> we filled 1. *.*•. Sum of element R<sub>2</sub>

9 + 3 + 7 = 19(15)  $(\mathbf{a}, \mathbf{a})$ 

$$19 + \begin{cases} 15 \\ 42 \end{cases} = \begin{cases} 34 \\ 25 \end{cases}$$

16 35

*.*.. In  $R_2$  we fill = 16 *:*.. In  $C_3$  we fill = 15.



**19.** An escalator moves up at a constant rate. John walks up the escalator at the rate of one step per second and reaches the top in twenty seconds. The next day John's rate was two steps per second, and he reached the top in sixteen seconds. The number of steps in the escalator is \_\_\_\_\_\_.

Sol. (80)

Let the speed of escalator = x steps/seconds. Number of steps =  $(x + 1) \times 20 = (x + 2) \times 16$ 20x + 20 = 16x + 324x = 12x = 3. Number of steps =  $(3 + 1) \times 20 = 80$ .

**20.** In a stack of coins, each row has exactly one coin less than the row below. If we have nine coins, two such towers are possible. Of these, the tower on the left is the tallest. If you have 2015 coins, the height of the tallest towers is \_\_\_\_\_\_.



### Sol. (BONUS)

### As the radius of the coin is not given.

Let number of coins in last row of tower is n and (m + 1) coins in top row, then we have to find  $(n - m)_{max}$ 



**21.** Circles A, B and C are externally tangent to each other and internally tangent to circle D. Circles A and B are congruent. Circle C has radius 1 unit and passes through the centre of circle D. Then the radius of circle B is \_\_\_\_\_\_ units.



Sol.  $(\frac{8}{9})$ 

In ∆MAN



**22.** The number of different integers x that satisfy the equation  $(x^2 - 5x + 5)^{(x^2 - 11x + 30)} = 1$  is

# Sol. (6)

 $\left(x^2 - 5x + 5\right)^{\!\!\left(x^2 + 11x + 30\right)} = 1$ Case- I Case-II  $x^2 - 11x + 30 = 0$  $1 = x^2 - 5x + 5$  $x^2 - 6x - 5x + 30 = 0$  $x^2 - 5x + 4 = 0$  $x^2 - 4x - x + 4 = 0$ x(x-6) - 5(x-6) = 0(x-6)(x-5) = 0x(x-4) - 1(x-4) = 0x = 5, 6 (x-4)(x-1) = 0x = 1, x = 4.Case - III  $x^2 - 5x + 5 = -1$  and  $x^2 - 11x + 30 = even$  $x^2 - 5x + 6 = 0$  $x^2 - 3x - 2x + 6 = 0$ x(x-3) - 2(x-3) = 0(x-3)(x-2) = 0x = 2, 3 at x = 2 and 3

 $x^2 - 11x + 30$  = even therefore x = 2, 3 are solutions. 6 answer.

23. In a single move a King K is allowed to move to any of the squares touching the square it is on, including diagonals, as indicated in the figure. The number of different paths using exactly seven moves to go from A to B is \_\_\_\_\_\_.



# Sol. (127)

**Note :** If King want to move from A to B in exact 7 moves then he can moves only the number marked in diagram and King can't move vertically up and can't move horizontally left. Number of ways to move from A to (6, 7, 8, 9) in exact three moves.

$$A - 1 - 3 - 6$$

$$1 - 3 - 7$$

$$A - 1 - 4 - 7$$

$$2 - 4 - 7$$

$$2 - 4 - 7$$

$$1 - 3 - 8$$

$$1 - 4 - 8$$

$$1 - 5 - 8$$

$$2 - 5 - 8$$

$$2 - 4 - 8$$

$$2 - 5 - 9$$

$$2 - 4 - 9$$

$$1 - 4 - 9$$

$$1 - 4 - 9$$

$$1 - 5 - 9$$



Number of ways to move from A to (6, 7, 8, 9) in exact three moves.

 $A \rightarrow 6$ 1 way  $A \rightarrow 7$ 3 ways  $A \rightarrow 8$ 5 ways  $A \rightarrow 9$ 4 ways Similarly number of ways to move toward B from (10, 11, 12, 13) in exact 3 moves.  $10 \rightarrow B$ 1 way  $11 \rightarrow B$ 3 ways  $12 \rightarrow B$ 5 ways  $13 \rightarrow B$ 4 ways Number of ways to move from (6, 7, 8, 9) to (10, 11, 12, 13) ٠10 2 ways 6 11 3 ways 3 ways - 12 2 ways 9< 13

So the to number of ways from A to B is divided in three parts.

I. A to (6, 7, 8, 9)

II.  $(6, 7, 8, 9, 10) \rightarrow (10, 11, 12, 13)$ , then

III.  $(10, 11, 12, 13) \rightarrow B$ 

1(1 + 3) + 3(1 + 3 + 5) + 5(3 + 5 + 4) + 4(5 + 4) = 4 + 27 + 60 + 36 = 127 ways. Explanation :

 $\underbrace{3}_{1 \text{ to 7}} \left( \underbrace{1}_{7 \text{ to 10 to B}} + \underbrace{3}_{7 \text{ to 11 to B}} + \underbrace{5}_{7 \text{ to 12 toB}} \right)$ 

**24.** In  $\triangle$ ABC shows below, AB = AC, F is a point on AB and E a point on AC such that AF = EF, H is a point in the interior of  $\triangle$ ABC, D is a point on BC and G is a point on AB such that EH = CH = DH = GH = DG = BG. Also,  $\angle$ CHE =  $\angle$ HGF. The measure of  $\angle$ BAC in degree is \_\_\_\_\_.







÷

Sol.

Let x and y be real numbers satisfying  $x^4y^5 + y^4x^5 = 810$  and  $x^3y^6 + y^3x^6 = 945$ . Then the value of  $2x^3 + y^4x^5 = 810$  and  $x^3y^6 + y^3x^6 = 945$ . 25. x<sup>3</sup>y<sup>3</sup> + 2y<sup>3</sup> is \_\_\_\_\_. (89)

$$\frac{x^4y^2(x+y)}{x^3y^3(x^3+y^3)} = \frac{810}{945}$$
  

$$\frac{xy(x+y)}{x^3+y^3} = \frac{6}{7}$$
  

$$\frac{xy}{x^2+y^2-xy} = \frac{6}{7} \implies 6x^2 + 6y^2 - 13xy = 0$$
  

$$\Rightarrow (3x-2y)(2x-3y) = 0$$
  

$$\frac{x}{y} = \frac{2}{3} \text{ or } \frac{y}{x} = \frac{2}{3}$$
  
Let  $x = \frac{2}{3}y$   
 $x^4y^5 + y^4x^5 = 810$   
 $\left(\frac{2}{3}y\right)^4y^5 + y^4\left(\frac{2}{3}y\right)^5 = 810$   
 $y^9 = \frac{3^9}{2^3} \implies y = \frac{3}{2^{1/3}} \implies y^3 = \frac{27}{2}$   
 $x = 2^{2/3} \implies x^3 = 4$   
 $\therefore 2x^3 + 2y^2 + x^3y^3 = 2.4 + 2$ .  $\frac{27}{2} = 8 + 27 + 54 = 89$ 



26. The least odd prime factor of 2019<sup>8</sup> + 1 is \_\_\_\_\_ (97) Sol. Let P be an odd prime which divides  $2019^8 + 1$  $2019^8 \equiv -1 \pmod{P}$ So  $2019^{16} \equiv 1 \pmod{P}$  $\Rightarrow$ Now by Euler's theorem  $2019^{P-1} \equiv 1 \pmod{P}$ So P - 1 should be divisible by 16 Where P is a prime First two prime numbers which gives remainder 1 when divided by 16 is 17 and 97 Case- 1 P = 17  $2019^8 + 1 \equiv 13^8 + 1 \equiv 4^8 + 1 \equiv 16^4 + 1 \equiv 2 \pmod{17}$ While  $2019^8 + 1 \equiv 79^8 + 1 \equiv 18^8 + 1 \equiv 324^4 + 1 \equiv 33^4 + 1 \equiv 1089^2 + 1 \equiv 22^2 + 1 \equiv 485 \equiv 0 \pmod{97}$ So the answer is 97. 27. Let a, b, c be positive integers each less than 50, such that  $a^2 - b^2 = 100c$ . The number of such triples (a, b, c) is Sol. (25)  $a^2 - b^2 = 100 c$ As  $a^2 - b^2$  is a multiple of 100. So it means the last 2 digit of  $a^2$  and  $b^2$  is same. So (a, b) can be (49, 1) (48, 2) (47, 3).....(26, 24) So there are 24 such pairs One more pair for (a, b) is (25, 15)So total 25 pairs are possible. 28. The number of non-negative integers which can be written in the form  $b_4 \cdot 3^4 + b_3 \cdot 3^3 + b_2 \cdot 3^2 + b_1 \cdot b_1 \cdot b_2 \cdot 3^2 + b_1 \cdot b_2 \cdot b_2 \cdot 3^2 + b_1 \cdot b_2 \cdot b_1 \cdot b_2 \cdot b_2 \cdot b_2 \cdot b_2 \cdot b_2 \cdot b_2 \cdot b$  $3^1 + b_0 \cdot 3^0$ , where  $b_i \in \{-1, 0, 1\}$  for  $0 \le i \le 4$  is \_ Sol. (122) $b_4 \cdot 3^4 + b_3 \cdot 3^3 + b_2 \cdot 3^2 + b_1 \cdot 3^1 + b_0 \cdot 3^0$ **Case - I :**  $b_4$  = 1 than we can take any value for  $b_3$ ,  $b_2$ ,  $b_1$ ,  $b_0$ so total number formed =  $3^4$ **Case - II**:  $b_4 = 0$  and  $b_3 = 1$  than we can take any value for  $b_2$ ,  $b_1$ ,  $b_0$ so total number formed =  $3^3$ **Case - III :**  $b_4 = 0$ ,  $b_3 = 0$  and  $b_2 = 1$  than we can take any value for  $b_1$ ,  $b_0$ so total number formed =  $3^2$ **Case - IV** :  $b_4 = 0$ ,  $b_3 = 0$ ,  $b_2 = 0$  and  $b_1 = 1$  than we can take any value for  $b_0$ so total number formed = 3**Case - V** :  $b_4 = b_3 = b_2 = b_1 = 0$ , than  $b_0$  can take value 0, 1 so total number formed = 2So total number formed =  $3^4 + 3^3 + 3^2 + 3 + 2$ = 81 + 27 + 9 + 3 + 2 = 122. 29.  $\{a_k\}$  is a sequence of integers, with  $a_1 = -2$  and  $a_{m+n} = a_m + a_n + mn$ , for all positive integers m, n. Then the value of  $a_8 =$ Sol. (12)  $a_1 = -2$  $a_2 = a_{1+1} = a_1 + a_1 + 1 \cdot 1$ = -2 - 2 + 1 = -3 $a_4 = a_{2+2} = a_1 + a_2 + 2 \cdot 2$ = -3 - 3 + 4 $a_4 = -2$  $a_8 = a_{4+4} = a_4 + a_4 + 4 \times 4$ = -2 - 2 + 16 = 12.

Resonance®

**30.** The coefficient of  $x^{90}$  in  $(1 + x + x^2 + x^3 + .... + x^{60}) (1 + x + x^2 + ..... + x^{120})$  is equal to \_\_\_\_\_.

# Sol. (61)

The coefficient of  $x^{90}$  in  $(1 + x + x^2 + x^3 + \dots + x^{60}) (1 + x + x^2 + \dots + x^{120})$  is obtained by when  $(1 \times x^{90}) + (x \times x^{89}) + (x^2 \times x^{88}) + \dots + (x^{60} \times x^{30})$ 

So, there are 61 terms in which the power x is 90 and there coefficient 1 so the coefficient of  $x^{90}$  is 61. Alternate :

$$\begin{aligned} &(1 + x + x^2 + x.... + x^{60}) (1 + x + x^2 + .... + x^{120}) \\ &= \left(\frac{1 - x^{61}}{1 - x}\right) \left(\frac{1 - x^{121}}{1 - x}\right) \\ &\text{Coefficient of } x^{90} \text{ in } \left(\frac{1 - x^{61}}{1 - x}\right) \left(\frac{1 - x^{121}}{1 - x}\right) \\ &= (1 - x^{61}) (1 - x^{121}) (1 - x)^{-2} \\ &= \text{coefficient of } x^{90} \text{ in } (1 - x)^{-2} - \text{coefficient of } x^{29} \text{ in } (1 - x)^{-2} \\ &= 9^{90 + 2 - 1}C_{2 - 1} - \frac{2^{9 + 2 - 1}C_{2 - 1}}{1 - 2^{9 - 2}} \\ &= 9^{10}C_{1} - {}^{30}C_{1} = 91 - 30 = 61. \end{aligned}$$

