

THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA

Screening Test - Bhaskara Contest

NMTC at JUNIOR LEVEL - IX & X Standards

Saturday, 1 September, 2018

Note:

- **1.** Fill in the response sheet with your Name, Class and the institution through which you appear in the specified places.
- 2. Diagrams are only visual aids; they are <u>NOT</u> drawn to scale.
- 3. You are free to do rough work on separate sheets.
- 4. Duration of the test: 2 pm to 4 pm -- 2 hours.

PART—A

Note

- Only one of the choices A. B, C, D is correct for each question. Shade the alphabet of your choice in the response sheet. If you have any doubt in the method of answering; seek the guidance of the supervisor.
- For each correct response you get 1 mark. For each incorrect response you lose $\frac{1}{2}$ mark.

1. The value of
$$\frac{3+\sqrt{6}}{8\sqrt{3}-2\sqrt{12}-\sqrt{32}+\sqrt{50}-\sqrt{27}}$$
 is
(A) $\sqrt{2}$ (B) $\sqrt{3}$ (C) $\sqrt{6}$

Ans. (B)

Sol.
$$\frac{3+\sqrt{6}}{8\sqrt{3}-4\sqrt{3}-4\sqrt{2}+5\sqrt{2}-3\sqrt{3}} = \frac{3+\sqrt{6}}{\sqrt{3}+\sqrt{2}} = \frac{\sqrt{3}(\sqrt{3}+\sqrt{2})}{\sqrt{3}+\sqrt{2}} = \sqrt{3}$$

- A train moving with a constant speed crosses a stationary pole in 4 seconds and a platform 75 m long in 9 seconds. The length of the train is (in meters)
 (A) 56
 (B) 58
 (C) 60
 (D) 62
- Ans. (C)
- $\textbf{Sol.} \qquad \text{Let the train have length } \ell m \text{ and speed s m/sec.}$

$$s = \frac{\ell}{4} \qquad \dots \dots \dots \dots (i)$$

$$s = \frac{\ell + 75}{9}$$

$$\frac{\ell}{4} = \frac{\ell + 75}{9} \qquad (By using (i))$$

$$9\ell = 4\ell + 300$$

$$5\ell = 300$$

$$\ell = 60 \text{ m.}$$

(D) √18

3.	One of the factors of (A) $3x - 4y - 2z$	$9x^{2} - 4z^{2} - 24xy + 16y^{2}$ (B) $3x + 4y - 2z$	² + 20y – 15x + 10 is (C) 3x + 4y + 2z	(Bonus) (D) 3x – 4y + 2z		
4.	The natural number which is subtracted from each of the four numbers 17,31,25,47 to give four numbers in proportion is					
Ano	(A) 1	(B) 2	(C*) 3	(D) 4		
Ans. Sol.	(C) Let x be subtracted s $\frac{17 - x}{31 - x} = \frac{25 - x}{47 - x}$ $(17 - x) (47 - x) = (2)$ $799 + x^{2} - 64x = 775$ $24 = 8x$	so that 17, 31, 25, 47 are 5 – x) (31 – x) 5 + x ² – 56x	e in proportion.			
	x = 3.					
5.	The solution to the e (A) 2	quation 5(3 [^]) + 3(5 [^]) = 5 (B) 4	i10 is (C) 5	(Bonus) (D) No solution		
6.	If $(x + 1)^2 = x$, the value	lue of $11x^3 + 8x^2 + 8x -$	2 is			
Ans. Sol.	(A) 1 (A) $(x + 1)^2 = x$ $x^2 + x + 1 = 0$	(B) 2	(C) 3	(D) 4		
	$11x^{3} + 8x^{2} + 8x - 2$ = (x ² + x + 1) (11x - = (0) (11x - 3) + 1 =	3) + 1 1.				
7.	There are two value The sum of these tw	s of m for which the eq o value of m is	uation $4x^2 + mx + 8x + 9$	9 = 0 has only one solution for x (Bonus)		
Sol.	(A) 1 D = 0 $(m + 8)^2 - 4.4.9 = 0$ m + 8 = ± 12 m = 4, - 20 sum = 4 - 20 = - 16.	(B) 2	(C) 3	(D) 4		
8.	The number of zeros	in the product of the firs	st 100 natural numbers is			
Ans.	(A) 12 (D)	(B) 15	(C) 18	(D) 24		
Sol.	$\left[\frac{100}{5}\right] + \left[\frac{100}{5^2}\right] + \left[\frac{100}{5^2$	$\left[\frac{100}{5^3}\right]$ +				
	= 24 So number of zeros	is 24.				
9.	The length of each s $(\Lambda) = 60\%$	ide of a triangle in increa	ased by 20% then the pe	rcentage increase of area is		
Ans.	(D)	(B) 12076	(0) 80 %	(D) 44 %		
Sol.	Let side of Δ are a, b	9, C				
	(Δ) area = $\sqrt{s(s-a)}$ When each side incr a' = 1.2a	(s-b) (s-c) eased by 20%				
	 Pesonance®					

Educating for better tomorrow

NMTC_STAGE-I _ 1 SEP. 2018_JUNIOR-2018_PAGE # 2

b' = 1.2b
c' = 1.2c
s' =
$$\frac{1.2 (a+b-c)}{2} = 1.2 s$$

(A) new area = $\sqrt{1.2s(1.2s-1.2a)} (1.2s-1.2b) (1.2s-1.2c)}$
= $(1.2)^2 \Lambda$
= 1.44 Λ
% increase = $\frac{\Lambda' - \Lambda}{\Lambda} \times 100 = 44\%$.
10. The number of pairs of relatively prime positive integers (a, b) such that $\frac{a}{b} + \frac{15b}{4a}$ is an integer is
(A) 1 (B) 2 (C) 3 (D) 4
Ans. (D)
Sol. Given a, b are relative prime positive integer such that $\frac{a}{b} + \frac{15b}{4a} = k$ (where k is an integer)
 $\Rightarrow a = kb - \frac{15b^2}{4a}$
Now as H.C.F. (a, b) = 1
so $a^{1}(5)$
 $\Rightarrow a = (1, 3, 5, 15)$
Put $a = 1$
 $1 = kb - \frac{15b^2}{4}$
 $Ab^2 \Rightarrow b = (2, 4, 6, 8 ...)$
Similarly only $b = 2$ simplify
Put $a = 3$ $\Rightarrow b = 2$
 $a = 15$ $\Rightarrow b = 2$
 $a = 16$ $\Rightarrow b = 2$
(A) $b = (1, 2), (3, 2), (5, 2), (15, 2)$
4 Ans.
11. The four digit number 8ab9 is a perfect square. The value of $a^2 + b^2$ is
(A) 52 (B) 62 (C) 54 (D) 68
Ans. (A)
Sol. $93^2 = 8649$
 $\therefore a = 6, b = 4$
 $\therefore a^2 + b^2 = 6^2 + 4^2 = 52.$
12. a, b are positive real numbers such that $\frac{1}{a} + \frac{9}{a} = 1$. The smallest value of $a + b$ is
(A) 15 (B) 16 (C) 17 (D) 18
Ans. (B)
Sol. $\frac{1}{a} + \frac{9}{b} = 1$
 $b = 9 + \frac{9}{a-1}$
 $a + b = a + 9 + \frac{9}{a-1} = 10 + (a-1) + \frac{9}{a-1}$

for (a - 1), $\frac{9}{a - 1}$ $AM \geq GM$ $\frac{a-1+\frac{9}{a-1}}{2} \geq \sqrt{\left(a-1\right)_{\frac{9}{a-1}}}$ $a-1+\frac{9}{a-1}\geq 6$ $a + b \ge 10 + 6$ *.*.. a + b ≥ 16. a, b real numbers. The least value of $a^2 + ab + b^2 - a - 2b$ is 13. (A) 1 (B) 0 (C) – 1 (D) 2 Ans. (C) $f(a, b) = a^2 + ab + b^2 - a - 2b$ Sol. $f_a = 2a + b - 1$ $f_{b} = a + 2b - 2$ $f_{aa} = 2$ $f_{bb} = 2$ $f_{ab} = 1$ for stationary points we need $f_a = f_b = 0$ which gives 2a + b = 1a + 2b = 2a = 0, b = 1only one point (a, b) = (0, 1)Now check $f_{aa} f_{bb} - f_{ab}^{2}$ $(2) (2) - (1)^2 = 3 > 0$ Now at $(a, b) = (0, 1) f_{aa} > 0$ and $f_{bb} > 0$ So, (a, b) = (0, 1) will given minimum value so f(0, 1) = 0 + 0 + 1 - 0 - 2 = -1 is the minimum value. 14. I is the incenter of a triangle ABC in which $\angle A = 80^{\circ}$. $\angle BIC =$ (A) 120° (B) 110° (C) 125° (D) 130° Ans. (D) $\angle BIC = 90 + \frac{A}{2} = 90 + \frac{80}{2} = 130^{\circ}.$ Sol. 15. In the adjoining figure ABCD is a square and DFEB is a rhombus \angle CDF = B A (B) 18° (A) 15° (C) 20° (D) 30°

Ans. (A)

PART - B

Note :

- Write the correct answer in the space provided in the response sheet
- For each correct response you get 1 mark. For each incorrect response you lose $\frac{1}{4}$ marks.

16. ABCD is a square E,F are point on BC, CD respectively and EAF = 45°. The value of $\frac{\text{EF}}{\text{BE} + \text{DF}}$ is

By ASA
$$\triangle ABE \cong \triangle ADG$$

 $AE = AG$
 $BE = GD$ (CPCT)
By SAS $\triangle GAF \cong \triangle EAF$
 $GF = EF$
 $GD + DF = EF$
 $BE + DF = EF$
 $1 = \frac{EF}{BE + DF}$.

17. The average of 5 consecutive natural numbers is 10. The sum of the second and fourth of these numbers is

Ans.

20

 $\frac{x + x + 1 + x + 2 + x + 3 + x + 4}{5} = 10$ Sol. 5x + 10 = 50x + 2 = 10x = 8 so the number are 8, 9, 10, 11, 12 9 + 11 = 20. *.*.

The number of natural number n for which $n^2 + 96$ is a perfect square is _____. 18.

Ans.

Sol.

4 $n^2 + 96 = k^2$ $k^2 - n^2 = 96$ $(k - n) (k + n) = 96 \times 1$ $= 48 \times 2$ $= 24 \times 4$ = 12 × 8 $= 16 \times 6$ $= 32 \times 3$ n = 23, 10, 2, 5 so number of values of n is 4.

n is an integer and $\sqrt{\frac{3n-5}{n+1}}$ is also an integer. The sum of all such n is _____ 19.

Ans. - 6

- $\sqrt{\frac{3n-5}{n+1}} = \sqrt{3-\frac{8}{n+1}}$ Sol. \therefore n + 1 = ± 1, 2, 4, 8. $n + 1 = 4 \implies$ n = 3 $n + 1 = -8 \implies$ n = -9So sum of two value of n = 3 - 9 = -6So that $\sqrt{\frac{3n-5}{n+1}}$ is a perfect square.
- $\frac{a}{b}$ is a fraction where a, b have no common factors other 1. b exceeds a by 3. If the numerator is 20. increased by 7, the fraction is increased by unity. The value of a + b ______ 11

Ans.

Sol.
$$\frac{a}{b} = \frac{x}{x+3}$$
$$\frac{a+7}{b} - \frac{a}{b} = 1$$
$$\frac{x+7}{x+3} - \frac{x}{x+3} = 1$$
$$\frac{x+7-x}{x+3} = 1$$
$$7 = x+3$$
$$x = 4.$$
$$\therefore \qquad \frac{a}{b} = \frac{x}{x+3} = \frac{y}{4+3} = \frac{4}{7}.$$
$$\therefore \qquad a+b=7+4=11$$

21. If
$$x = \sqrt[3]{2} + \frac{1}{\sqrt[3]{2}}$$
, then the value of $2x^3 - 6x$ is _____.

Ans.

5

Sol.
$$x = \sqrt[3]{2} + \frac{1}{\sqrt[3]{2}}$$

 $x^{3} = 2 + \frac{1}{2} + 3\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{2}}\right)$
 $x^{3} = \frac{5}{2} + 3(x)$
 $2x^{3} = 5 + 6x$
 $2x^{3} - 6x = 5.$

22. The angle of a heptagon are 160°, 135°, 185°, 140°, 125°, x°, x°. The value of x is _____.

Ans. $77\frac{1}{2}^{\circ}$

Sol. $160 + 135 + 185 + 140 + 125 + 2x = 900^{\circ}$ $745^{\circ} + 2x = 900^{\circ}$ $2x = 155^{\circ}$ $x = \left(\frac{155}{2}\right)^{\circ} = 77\frac{1}{2}^{\circ}$.

23. ABC is a triangle and AD is its altitude. If BD = 5DC, then the value of $\frac{3(AB^2 - AC^2)}{BC^2}$ is _____.

Ans. Sol. 2

- **24.** As sphere is inscribed in a cube that has surface area of 24 cm². A second cube is then inscribed within the sphere. The surface area of the inner cube (in cm²) is _____
- Ans. Sol.

- **25.** A positive integer n is multiple of 7. If \sqrt{n} lies between 15 and 16, the number of possible values (s) of n is _____.
- Ans.

4

- **Sol.** $15 < \sqrt{n} < 16$ 225 < n < 256 as n is multiple of 7 are 231, 238, 245, 252 so total 4 numbers.
- 26. The value of x which satisfies the equation $\frac{\sqrt{x+5} + \sqrt{x-16}}{\sqrt{x+5} \sqrt{x-16}} = \frac{7}{3}$ is _____
- **Ans.** 20

Sol. By C and D
$$2\sqrt{x+5}$$
 7+3

$$\frac{1}{2\sqrt{x-16}} = \frac{1}{7-3}$$
$$\frac{x+5}{x-16} = \left(\frac{10}{4}\right)^2$$
$$\frac{x+5}{x-16} = \frac{25}{4}$$
$$4x + 20 = 25x - 400$$
$$420 = 21x$$
$$\Rightarrow x = \frac{420}{21} = 20.$$

27. M man do a work in m days. If there had been N men more, the work would have been finished n days earlier, then the value of $\frac{m}{n} - \frac{M}{N}$ is _____.

Ans. 1

	Men	Day	Work				
Sol.	М	m	Mm				
	M + N	m – n	(M+N)(m-n)				
Mm = (M + N) (m - n)							

Mm = Mm - Mn + Nm - NnNm - Mn = Nn....(i) $\frac{m}{n} - \frac{M}{N} = \frac{mN - Mn}{nN} = \frac{Nn}{Nn} = 1.$ *.*..

28. The sum of the digit of a two number is 15. If the digits of the given number are reversed, the number is increased by the square of 3. The original number is ______.

Ans. 78 Sol. N = 10a + bN' = 10b + aa + b = 15 $N' = N + 3^2$ 10b + a = 10a + b + 99b - 9a = 9b – a = 1 a = 7, b = 8N = 78. When expanded the units place of (3127)¹⁷³ is _____. 29. Ans. 7 Cyclicity of 7 is 4 Sol. $173 = 4 \times 43 + 1$ so unit digit is $7^1 = 7$. 30. If a : (b + c) = 1 : 3 and c : (a + b) = 5 : 7 , then b : (c + a) is _____ Ans. $\overline{2}$ $\frac{a}{b+c} = \frac{1}{3} \qquad \qquad \frac{c}{a+b} = \frac{5}{7}$ Sol. 3a - b - c = 0.....(i) 5a + 5b - 7c = 0.....(ii) by (i) \times 5 – (ii) \times 3, we get 15a - 5b - 5c = 015a + 15b -21c = 0 - - + -20b + 16c = 0 $b = \frac{16}{20}c = \frac{4}{5}c$ Put b = $\frac{4}{5}$ c in (i) $3a - \frac{4}{5}c - c = 0$ $3a = \frac{9}{5}c$ $a = \frac{3}{5}c$ $\frac{b}{c+a} = \frac{\frac{4}{5}c}{c+\frac{3}{5}c} = \frac{\frac{4}{5}c}{c+\frac{8}{5}c} = \frac{1}{2}.$ ÷

Test Dates: 14 October & 25 November 2018

Your Maximum Efforts will reap you Benefits Fivefold.

© 0744-6635569 ⊕ www.pccp.resonance.ac.in

