THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA
 Screening Test - Bhaskara Contest
 NMTC at JUNIOR LEVEL - IX \& X Standards
 Saturday, 1 September, 2018

Note:

1. Fill in the response sheet with your Name, Class and the institution through which you appear in the specified places.
2. Diagrams are only visual aids; they are NOT drawn to scale.
3. You are free to do rough work on separate sheets.
4. Duration of the test: 2 pm to $4 \mathrm{pm}-2$ hours.

PART—A

Note

- Only one of the choices A. B, C, D is correct for each question. Shade the alphabet of your choice in the response sheet. If you have any doubt in the method of answering; seek the guidance of the supervisor.
- For each correct response you get 1 mark. For each incorrect response you lose $\frac{1}{2}$ mark.

1. The value of $\frac{3+\sqrt{6}}{8 \sqrt{3}-2 \sqrt{12}-\sqrt{32}+\sqrt{50}-\sqrt{27}}$ is
(A) $\sqrt{2}$
(B) $\sqrt{3}$
(C) $\sqrt{6}$
(D) $\sqrt{18}$

Ans. (B)
Sol. $\frac{3+\sqrt{6}}{8 \sqrt{3}-4 \sqrt{3}-4 \sqrt{2}+5 \sqrt{2}-3 \sqrt{3}}=\frac{3+\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\frac{\sqrt{3}(\sqrt{3}+\sqrt{2})}{\sqrt{3}+\sqrt{2}}=\sqrt{3}$.
2. A train moving with a constant speed crosses a stationary pole in 4 seconds and a platform 75 m long in 9 seconds. The length of the train is (in meters)
(A) 56
(B) 58
(C) 60
(D) 62

Ans. (C)
Sol. Let the train have length $\ell \mathrm{m}$ and speed $\mathrm{s} \mathrm{m} / \mathrm{sec}$.
$\mathrm{s}=\frac{\ell}{4}$
$s=\frac{\ell+75}{9}$
$\frac{\ell}{4}=\frac{\ell+75}{9} \quad$ (By using (i))
$9 \ell=4 \ell+300$
$5 \ell=300$
$\ell=60 \mathrm{~m}$.
3. One of the factors of $9 x^{2}-4 z^{2}-24 x y+16 y^{2}+20 y-15 x+10$ is
(Bonus)
(A) $3 x-4 y-2 z$
(B) $3 x+4 y-2 z$
(C) $3 x+4 y+2 z$
(D) $3 x-4 y+2 z$
4. The natural number which is subtracted from each of the four numbers $17,31,25,47$ to give four numbers in proportion is
(A) 1
(B) 2
$\left(\mathrm{C}^{*}\right) 3$
(D) 4

Ans. (C)
Sol. Let x be subtracted so that 17, 31, 25, 47 are in proportion.
$\frac{17-x}{31-x}=\frac{25-x}{47-x}$
$(17-x)(47-x)=(25-x)(31-x)$
$799+x^{2}-64 x=775+x^{2}-56 x$
$24=8 x$
$x=3$.
5. The solution to the equation $5\left(3^{x}\right)+3\left(5^{x}\right)=510$ is
(Bonus)
(A) 2
(B) 4
(C) 5
(D) No solution
6. If $(x+1)^{2}=x$, the value of $11 x^{3}+8 x^{2}+8 x-2$ is
(A) 1
(B) 2
(C) 3
(D) 4

Ans. (A)
Sol. $(x+1)^{2}=x$
$x^{2}+x+1=0$
$11 x^{3}+8 x^{2}+8 x-2$
$=\left(x^{2}+x+1\right)(11 x-3)+1$
$=(0)(11 x-3)+1=1$.
7. There are two values of m for which the equation $4 x^{2}+m x+8 x+9=0$ has only one solution for x.

The sum of these two value of m is
(Bonus)
(A) 1
(B) 2
(C) 3
(D) 4

Sol. $\quad \mathrm{D}=0$
$(m+8)^{2}-4.4 .9=0$
$m+8= \pm 12$
$m=4,-20$
sum $=4-20=-16$.
8. The number of zeros in the product of the first 100 natural numbers is
(A) 12
(B) 15
(C) 18
(D) 24

Ans. (D)
Sol. $\left[\frac{100}{5}\right]+\left[\frac{100}{5^{2}}\right]+\left[\frac{100}{5^{3}}\right]+\ldots \ldots .$.
$=20+4+0+0+\ldots \ldots \ldots$
$=24$
So number of zeros is 24 .
9. The length of each side of a triangle in increased by 20% then the percentage increase of area is
(A) 60%
(B) 120%
(C) 80%
(D) 44%

Ans. (D)
Sol. Let side of Δ are a, b, c
(Δ) area $=\sqrt{s(s-a)(s-b)(s-c)}$
When each side increased by 20%
$\mathrm{a}^{\prime}=1.2 \mathrm{a}$
$b^{\prime}=1.2 b$
$c^{\prime}=1.2 \mathrm{c}$
$\mathrm{s}^{\prime}=\frac{1.2(\mathrm{a}+\mathrm{b}+\mathrm{c})}{2}=1.2 \mathrm{~s}$
$\left(\Delta^{\prime}\right)$ new area $=\sqrt{1.2 \mathrm{~s}(1.2 \mathrm{~s}-1.2 \mathrm{a})(1.2 \mathrm{~s}-1.2 \mathrm{~b})(1.2 \mathrm{~s}-1.2 \mathrm{c})}$
$=(1.2)^{2} \Delta$
$=1.44 \Delta$
$\%$ increase $=\frac{\Delta^{\prime}-\Delta}{\Delta} \times 100=44 \%$.
10. The number of pairs of relatively prime positive integers (a, b) such that $\frac{a}{b}+\frac{15 b}{4 a}$ is an integer is
(A) 1
(B) 2
(C) 3
(D) 4

Ans. (D)
Sol. Given a, b are relative prime positive integer such that $\frac{a}{b}+\frac{15 b}{4 a}=k$ (where k is an integer)
$\Rightarrow \quad a=k b-\frac{15 b^{2}}{4 a}$
Now as H.C.F. $(a, b)=1$
so a/15
$\Rightarrow \quad a\{1,3,5,15\}$
Put $\quad a=1$

$$
\begin{aligned}
& 1=k b-\frac{15 b^{2}}{4} \\
& 4 / b^{2} \Rightarrow b=\{2,4,6,8 \ldots\}
\end{aligned}
$$

Similarly only $b=2$ simplify
Put $\quad \begin{array}{ll}a=3 & \Rightarrow b=2 \\ a=5 & \Rightarrow b=2 \\ a=15 & \Rightarrow b=2\end{array}$
$(a, b)=(1,2),(3,2),(5,2),(15,2)$
4 Ans.
11. The four digit number 8ab9 is a perfect square. The value of $a^{2}+b^{2}$ is
(A) 52
(B) 62
(C) 54
(D) 68

Ans. (A)
Sol. $\quad 93^{2}=8649$
$\therefore \quad a=6, b=4$
$\therefore \quad a^{2}+b^{2}=6^{2}+4^{2}=52$.
12. a, b are positive real numbers such that $\frac{1}{a}+\frac{9}{b}=1$. The smallest value of $a+b$ is
(A) 15
(B) 16
(C) 17
(D) 18

Ans. (B)
Sol. $\frac{1}{\mathrm{a}}+\frac{9}{\mathrm{~b}}=1$
$b=\frac{9 a}{a-1}$
$b=9+\frac{9}{a-1}$
$a+b=a+9+\frac{9}{a-1}=10+(a-1)+\frac{9}{a-1}$
for $(a-1), \frac{9}{a-1}$
$\mathrm{AM} \geq \mathrm{GM}$
$\frac{a-1+\frac{9}{a-1}}{2} \geq \sqrt{(a-1) \frac{9}{a-1}}$
$a-1+\frac{9}{a-1} \geq 6$
$\therefore \quad a+b \geq 10+6$
$a+b \geq 16$.
13. a, b real numbers. The least value of $a^{2}+a b+b^{2}-a-2 b$ is
(A) 1
(B) 0
(C) -1
(D) 2

Ans. (C)
Sol. $f(a, b)=a^{2}+a b+b^{2}-a-2 b$
$f_{a}=2 a+b-1$
$\mathrm{f}_{\mathrm{b}}=\mathrm{a}+2 \mathrm{~b}-2$
$\mathrm{f}_{\mathrm{aa}}=2$
$f_{b b}=2$
$f_{a b}=1$
for stationary points we need $f_{a}=f_{b}=0$
which gives
$2 a+b=1$
$a+2 b=2$
$a=0, b=1$
only one point $(a, b)=(0,1)$
Now check
$f_{a a} f_{b b}-f_{a b}{ }^{2}$
(2) $(2)-(1)^{2}=3>0$

Now at $(a, b)=(0,1) f_{a a}>0$ and $f_{b b}>0$
So, $(a, b)=(0,1)$ will given minimum value
so $f(0,1)=0+0+1-0-2=-1$ is the minimum value.
14. I is the incenter of a triangle ABC in which $\angle \mathrm{A}=80^{\circ} . \angle \mathrm{BIC}=$
(A) 120°
(B) 110°
(C) 125o
(D) 130°

Ans. (D)
Sol. $\angle B I C=90+\frac{A}{2}=90+\frac{80}{2}=130^{\circ}$.
15. In the adjoining figure ABCD is a square and DFEB is a rhombus $\angle \mathrm{CDF}=$

(A) 15°
(B) 18°
(C) 20°
(D) 30°

Ans. (A)

Sol. Let side of square $=1$

$$
\begin{array}{ll}
\therefore & \text { side of rhombus }=\sqrt{2} \\
\therefore & \mathrm{DG}=\mathrm{GC}=\frac{1}{\sqrt{2}} \\
& \\
& \mathrm{GF}=\sqrt{(\sqrt{2})^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}}=\frac{\sqrt{3}}{2} \\
& C F=G F-G C=\frac{\sqrt{3}}{\sqrt{2}}-\frac{1}{\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}}
\end{array}
$$

Apply sine rule $\Delta C D F$

$\frac{\sin \theta}{\frac{\sqrt{3}-1}{\sqrt{2}}}=\frac{\sin 135^{\circ}}{\sqrt{2}}$
$\sin \theta=\frac{\sqrt{3}-1}{2 \sqrt{2}}$ and we know $\sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$
$\therefore \quad \theta=15^{\circ}$.

PART - B

Note :

- Write the correct answer in the space provided in the response sheet
- For each correct response you get 1 mark. For each incorrect response you lose $\frac{1}{4}$ marks.

16. $A B C D$ is a square E, F are point on $B C, C D$ respectively and $E A F=45^{\circ}$. The value of $\frac{E F}{B E+D F}$ is

Ans. 1
Sol.

By ASA
$\triangle \mathrm{ABE} \cong \triangle \mathrm{ADG}$
$A E=A G$
$B E=G D \quad(C P C T)$
By SAS

$$
\begin{aligned}
& \Delta \mathrm{GAF} \cong \triangle \mathrm{EAF} \\
& \mathrm{GF}=\mathrm{EF} \\
& \mathrm{GD}+\mathrm{DF}=\mathrm{EF} \\
& \mathrm{BE}+\mathrm{DF}=\mathrm{EF} \\
& 1=\frac{\mathrm{EF}}{\mathrm{BE}+\mathrm{DF}}
\end{aligned}
$$

17. The average of 5 consecutive natural numbers is 10 . The sum of the second and fourth of these numbers is \qquad .
Ans. 20
Sol. $\frac{x+x+1+x+2+x+3+x+4}{5}=10$
$5 x+10=50$
$x+2=10$
$x=8$
so the number are $8,9,10,11,12$
$\therefore \quad 9+11=20$.
18. The number of natural number n for which $n^{2}+96$ is a perfect square is \qquad .
Ans. 4
Sol. $n^{2}+96=k^{2}$
$k^{2}-n^{2}=96$
$(k-n)(k+n)=96 \times 1$

$$
=48 \times 2
$$

$$
=24 \times 4
$$

$$
=12 \times 8
$$

$$
=16 \times 6
$$

$$
=32 \times 3
$$

$n=23,10,2,5$
so number of values of n is 4 .
19. n is an integer and $\sqrt{\frac{3 n-5}{n+1}}$ is also an integer. The sum of all such n is \qquad
Ans. - 6
Sol. $\sqrt{\frac{3 n-5}{n+1}}=\sqrt{3-\frac{8}{n+1}}$
$\therefore \quad n+1= \pm 1,2,4,8$.
$n+1=4 \quad \Rightarrow \quad n=3$
$\mathrm{n}+1=-8 \quad \Rightarrow \quad \mathrm{n}=-9$
So sum of two value of $n=3-9=-6$
So that $\sqrt{\frac{3 n-5}{n+1}}$ is a perfect square.
20. $\frac{a}{b}$ is a fraction where a, b have no common factors other $1 . b$ exceeds a by 3 . If the numerator is increased by 7 , the fraction is increased by unity. The value of $a+b$ \qquad .
Ans. 11

Sol. $\quad \frac{a}{b}=\frac{x}{x+3}$
$\frac{a+7}{b}-\frac{a}{b}=1$
$\frac{x+7}{x+3}-\frac{x}{x+3}=1$
$\frac{x+7-x}{x+3}=1$
$7=x+3$
$x=4$.
$\therefore \quad \frac{\mathrm{a}}{\mathrm{b}}=\frac{\mathrm{x}}{\mathrm{x}+3}=\frac{\mathrm{y}}{4+3}=\frac{4}{7}$.
$\therefore \quad a+b=7+4=11$
21. If $x=\sqrt[3]{2}+\frac{1}{\sqrt[3]{2}}$, then the value of $2 x^{3}-6 x$ is \qquad -
Ans. 5
Sol. $x=\sqrt[3]{2}+\frac{1}{\sqrt[3]{2}}$
$x^{3}=2+\frac{1}{2}+3\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{2}}\right)$
$x^{3}=\frac{5}{2}+3(x)$
$2 x^{3}=5+6 x$
$2 x^{3}-6 x=5$.
22. The angle of a heptagon are 160°, $135^{\circ}, 185^{\circ}, 140^{\circ}, 125^{\circ}, x^{\circ}, x^{\circ}$. The value of x is \qquad .
Ans. $77 \frac{1}{2}^{\circ}$
Sol. $160+135+185+140+125+2 x=900^{\circ}$
$745^{\circ}+2 x=900^{\circ}$
$2 x=155^{\circ}$
$x=\left(\frac{155}{2}\right)^{\circ}=77 \frac{1}{2}^{\circ}$.
23. $A B C$ is a triangle and $A D$ is its altitude. If $B D=5 D C$, then the value of $\frac{3\left(A B^{2}-A C^{2}\right)}{B C^{2}}$ is \qquad -.
Ans. 2
Sol.

$$
\frac{3\left(A B^{2}-A C^{2}\right)}{B C^{2}}=\frac{3\left[\left\{h^{2}+25 x^{2}\right\}-\left\{h^{2}+x^{2}\right\}\right]}{(6 x)^{2}}=\frac{3\left[24 x^{2}\right]}{36 x^{2}}=2
$$

24. As sphere is inscribed in a cube that has surface area of $24 \mathrm{~cm}^{2}$. A second cube is then inscribed within the sphere. The surface area of the inner cube (in cm^{2}) is \qquad
Ans. 8
Sol.

25. A positive integer n is multiple of 7 . If $\sqrt{\mathrm{n}}$ lies between 15 and 16 , the number of possible values (s) of n is \qquad -.
Ans. 4
Sol. $15<\sqrt{n}<16$
$225<\mathrm{n}<256$
as n is multiple of 7 are $231,238,245,252$
so total 4 numbers.
26. The value of x which satisfies the equation $\frac{\sqrt{x+5}+\sqrt{x-16}}{\sqrt{x+5}-\sqrt{x-16}}=\frac{7}{3}$ is \qquad
Ans. 20
Sol. By C and D

$$
\begin{aligned}
& \frac{2 \sqrt{x+5}}{2 \sqrt{x-16}}=\frac{7+3}{7-3} \\
& \frac{x+5}{x-16}=\left(\frac{10}{4}\right)^{2} \\
& \frac{x+5}{x-16}=\frac{25}{4} \\
& 4 x+20=25 x-400 \\
& 420=21 x \\
& \Rightarrow x=\frac{420}{21}=20
\end{aligned}
$$

27. M man do a work in m days. If there had been N men more, the work would have been finished n days earlier, then the value of $\frac{m}{n}-\frac{M}{N}$ is \qquad -.
Ans. 1

Sol.

Men	Day	Work
M	m	$M m$
$M+N$	$m-n$	$(M+N)(m-n)$

$M m=(M+N)(m-n)$

$$
\begin{aligned}
& \mathrm{Mm}=\mathrm{Mm}-\mathrm{Mn}+\mathrm{Nm}-\mathrm{Nn} \\
& \mathrm{Nm}-\mathrm{Mn}=\mathrm{Nn} \\
& \therefore \quad \frac{\mathrm{~m}}{\mathrm{n}}-\frac{\mathrm{M}}{\mathrm{~N}}=\frac{\mathrm{mN}-\mathrm{Mn}}{\mathrm{nN}}=\frac{\mathrm{Nn}}{\mathrm{Nn}}=1 .
\end{aligned}
$$

28. The sum of the digit of a two number is 15 . If the digits of the given number are reversed, the number is increased by the square of 3 . The original number is \qquad _.
Ans. 78
Sol. $\quad N=10 a+b$
$N^{\prime}=10 b+a$
$a+b=15$
$N^{\prime}=N+3^{2}$
$10 b+a=10 a+b+9$
$9 b-9 a=9$
$b-a=1$
$a=7, b=8$
$\mathrm{N}=78$.
29. When expanded the units place of $(3127)^{173}$ is \qquad .
Ans. 7
Sol. Cyclicity of 7 is 4
$173=4 \times 43+1$
so unit digit is $7^{1}=7$.
30. If $a:(b+c)=1: 3$ and $c:(a+b)=5: 7$, then $b:(c+a)$ is \qquad
Ans. $\frac{1}{2}$
Sol. $\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}=\frac{1}{3} \quad \frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}=\frac{5}{7}$
$3 a-b-c=0$
$5 a+5 b-7 c=0$
by (i) $\times 5-$ (ii) $\times 3$, we get

$$
15 a-5 b-5 c=0
$$

$$
15 a+15 b-21 c=0
$$

- - +

$$
\begin{aligned}
& -20 b+16 c=0 \\
& b=\frac{16}{20} c=\frac{4}{5} c
\end{aligned}
$$

Put $b=\frac{4}{5} c$ in (i)

$$
\begin{aligned}
& 3 a-\frac{4}{5} c-c=0 \\
& 3 a=\frac{9}{5} c \\
& a=\frac{3}{5} c
\end{aligned}
$$

$\therefore \quad \frac{b}{c+a}=\frac{\frac{4}{5} c}{c+\frac{3}{5} c}=\frac{\frac{4}{5} c}{c+\frac{8}{5} c}=\frac{1}{2}$.

Score more. Pay less. Study more.

Pay the fees for 1 year \& study for 5 years

Test Dates: 14 October \& 25 November 2018

Your Maximum Efforts will reap you Benefits Fivefold.

Stage-1: $\mathbf{2 4}$ Dec to 30 Dec 2018 | 31 Dec to 06 Jan 2019 | Stage-2 \& Board: 24 Dec to 06 Jan 2019

