THE ASSOCIATION OF MATHEMATICS TEACHERS OF INDIA KAPREKAR CONTEST - FINAL - SUB JUNIOR Classes VII \& VIII Saturday, 28th October_2017.

Instructions:

1. Answer as many questions as possible.
2. Elegant and novel solutions will get extra credits.
3. Diagrams and explanations should be given wherever necessary.
4. Fill in FACE SLIP and your rough working should be in the answer book.
5. Maximum time allowed is THREE hours.
6. All questions carry equal marks.
7. (a) Find all three digit numbers in which any two adjacent digits differ by 3.
(b) There are 5 cards. Five positive integers (may be different or equal) are written on these cards, one on each card. Abhiram finds the sum of the numbers on every pair of cards. He obtains only three different totals $57,70,83$. Find the largest integer written on a card.

Sol. (a) Let the no. be xyz
$x \rightarrow 1$ to 9
$\mathrm{y} \rightarrow 0$ to 9
$z=0$ to 9
$x \& y$ are
$x=(1$ to 2$)$ or (7 to 9$) \quad y=(0$ to 2$)$ or (7 to 9$)$ (0 cases)
$x=(3$ to 6$), y=(0$ to 2$)$ or (7 to 9) (6 cases)
(30, 41, 47, 52, 58, 69)
$x=(1$ to 2$)$ or $(7$ to 9$) \quad y=(3$ to 6$)$ (5 cases)
(14,25,74,85,96)
$x=(3$ to 6$) y=(3$ to 6$) \quad$ (2 cases)
$(36,63)$
No. are
$141,147,252,258,303,363,369,414,474,525,585,630,636,696,741,747,852$,
858, 963,969
20 Number of there
(b) As the three sum are obtained $57,70,83$

We have combination of three numbers same and two numbers different
a, a, a, b, c
$a+b=57$
$b+c=70$
$c+a=83$

$$
\begin{aligned}
& 2 \mathrm{a}=70 \\
& \mathrm{a}=35 \\
& \mathrm{~b}=22 \\
& \mathrm{c}=48
\end{aligned}
$$

Largest integer is 48
2. (a) $A B C$ is a triangle in which $A B=24, B C=10$ and $C A=26 . P$ is a point inside the triangle. Perpendiculars are drawn to $B C, A B$ and $A C$. Length of these perpendiculars respectively are x, y and z. Find the numerical value of $5 x+12 y+13 z$.
(b) If $x^{2}(y+z)=a^{2}, y^{2}(z+x)=b^{2}, z^{2}(x+y)=c^{2}, x y z=a b$ c prove that $a^{2}+b^{2}+c^{2}+2 a b c=1$

Sol. (a) $\quad \Delta=\frac{1}{2} 24 \times 10=20$

$$
\Delta=\operatorname{ar} \Delta \mathrm{PAB}+\Delta \mathrm{PBC}+\text { or } \Delta \mathrm{PAC}
$$

$$
120=\frac{1}{2} x \times 10+\frac{1}{2} z \times 26+\frac{1}{2} y+24
$$

$$
120=5 x+13 z+12 y
$$

(b) If $x^{2}(y+z)=a^{2}, y^{2}(z+x)=b^{2}, z^{2}(x+y)=c^{2}, x y z=a b c$

$$
x^{2}(y+z) y^{2}(z+x) z^{2}(x+y)=a^{2} b^{2} c^{2}
$$

$$
x^{2} y^{2} z^{2}(x+y)(y+z)(z+x)=a^{2} b^{2} c^{2}
$$

$$
x y z=a b c
$$

$$
(x+y)(y+z)(z+x)=1
$$

$a^{2}+b^{2}+c^{2}+2 a b c \Rightarrow$
$x^{2}(y+z)+y^{2}(z+x)+z^{2}(x+y)+2 x y z$
Put $y=-z$
$0+z^{2}(z+x)+z^{2}(x-z)+2 x(-z) z$

$$
z^{3}+z^{2} x+z^{2} x-z^{3}-2 z^{2} x=0
$$

$\therefore \quad(y+z)$ is factors
Similarly $(x+y) \&(x+z)$ are factors
$x^{2}(y+z)+y^{2}(z+x)+z^{2}(x+y)+2 x y z$

$$
=k(x+y)(y+z)(x+z)
$$

For k put $x=0 \quad y=1 z=1$

$$
\begin{gathered}
0+1+1+0=k(1)(2)(1) \\
2=2 k
\end{gathered}
$$

$$
k=1
$$

$$
x^{2}(y+z)+y^{2}(z+x)+z^{2}(x+y)+2 x y z
$$

$$
=(x+y)(y+z)(z+x)
$$

and $\quad(x+y)(y+z)(z+x)=1$
$\therefore \quad x^{2}(y+z)+y^{2}(z+x)+z^{2}(x+y)+2 x y z=1$
3. If

$$
\begin{aligned}
& X=\frac{a^{2}-(2 b-3 c)^{2}}{(3 c+a)^{2}-4 b^{2}}+\frac{4 b^{2}-(3 c-a)^{2}}{(a+2 b)^{2}-9 c^{2}}+\frac{9 c^{2}-(a-2 b)^{2}}{(2 b+3 c)^{2}-a^{2}} \\
& Y=\frac{9 y^{2}-(4 z-2 x)^{2}}{(2 x+3 y)^{2}-16 z^{2}}+\frac{16 z^{2}-(2 x-3 y)^{2}}{(3 y+4 z)^{2}-4 x^{2}}+\frac{4 x^{2}-(3 y-4 z)^{2}}{(4 z+2 x)^{2}-9 y^{2}}
\end{aligned}
$$

Find 2017 ($\mathrm{X}+\mathrm{Y}$)
Sol. $\quad x=\frac{a^{2}-(2 b-3 c)^{2}}{(3 c+a)^{2}-4 b^{2}}+\frac{4 b^{2}-(3 c-a)^{2}}{(a+2 b)^{2}-9 c^{2}}+\frac{9 c^{2}-(a-2 b)^{2}}{(2 b+3 c)^{2}-a^{2}}$
$x=\frac{(a+2 b-3 c)(a-2 b+3 c)}{(3 c+a+2 b)(3 c+a-2 b)}+\frac{(2 b+3 c-a)(2 b-3 c+a)}{(a+2 b+3 c)(a+2 b-3 c)}+\frac{(3 c+a-2 b)(3 c-a+2 b)}{(2 b+3 c+a)(2 b+3 c-a)}$
$x=\frac{a+2 b-3 c}{a+2 b+3 c}+\frac{2 b+3 c-a}{a+2 b+3 c}+\frac{3 c+a-2 b}{a+2 b+3 c}$
$x=\frac{a+2 b-3 c+2 b+3 c-a+3 c+a-2 b}{a+2 b+3 c}$
$x=\frac{a+2 b+3 c}{a+2 b+3 c}=1$
$Y=\frac{9 y^{2}-(4 z-2 x)^{2}}{(2 x+3 y)^{2}-16 z^{2}}+\frac{16 z^{2}-(2 x-3 y)^{2}}{(3 y+4 z)^{2}-4 x^{2}}+\frac{4 x^{2}-(3 y-4 z)^{2}}{(4 z+2 x)^{2}-9 y^{2}}$
$Y=\frac{(3 y+4 z-2 x)(3 y-4 z+2 x)}{(2 x+3 y+4 z)(2 x+3 y-4 z)}+\frac{(4 z+2 x-3 y)(4 z-2 x+3 y)}{(3 y+4 z+2 x)(3 y+4 z-2 x)}+\frac{(2 x+3 y-4 z)(2 x-3 y+4 z)}{(4 z+2 x+3 y)(4 z+2 x-3 y)}$
$Y=\frac{3 y+4 z-2 x}{2 x+3 y+4 z}+\frac{4 z+2 x-3 y}{2 x+3 y+4 z}+\frac{2 x+3 y-4 z}{2 x+3 y+4 z}$
$Y=\frac{3 y+4 z-2 x+4 z+2 x-3 y+2 x+3 y-4 z}{2 x+3 y+4 z}$
$Y=\frac{2 x+3 y+4 z}{2 x+3 y+4 z}=1$
So, $\quad 2017(x+y)$
$2017(1+1)$
$2017 \times 2=4034 \quad$ Ans.
4. The sum of the ages of a man and his wife is six times the sum of the ages of their children. Two years ago the sum of their ages was ten times the sum of the ages of their children. Six years hence the sum of their ages will be three times the sum of the ages of their children. How many children do they have?

Sol. Let present age of $\operatorname{man}=M$
Let present age of wife $=\mathrm{W}$
Let the no. of children $=x$
Let the sum of the ages of children $=C$
ATQ

$$
\begin{align*}
& M+W=6 C \tag{1}\\
& M-2+W-2=10(C-2 x) \tag{2}\\
& M+6+W+6=3(C+6 x) \tag{3}
\end{align*}
$$

From (2) $M+W-4=10 C-20 x$
By using (1) $6 C-4=10 C-20 x$

$$
-4 C+20 x=4
$$

$$
\begin{equation*}
-C+5 x=1 \tag{5}
\end{equation*}
$$

From (3)
By using (1)

$$
M+W+12=3 C+18 x
$$

$$
6 C+12=3 C+18 x
$$

$$
3 C-18 x=-12
$$

$$
\begin{equation*}
C-6 x=-4 \tag{6}
\end{equation*}
$$

From (5) \& (6)

$$
\begin{aligned}
& -C+5 x=1 \\
& C-6 x=-4 \\
& -x=-3 \\
& x=3
\end{aligned}
$$

$$
\therefore \quad-\mathrm{x}=-3
$$

Ans.

5. (a) a, b, c are three natural numbers such that $a \times b \times c=27846$. If $\frac{a}{6}=b+4=c-4$, find $a+b+c$.
(b) ABCDEFGH is a regular octagon with side length equal to a. Find the area of the trapezium ABDG.

Sol. (a) $a \times b \times c=27846$

$$
\begin{align*}
& \frac{a}{b}=b+4=c-4 \tag{1}\\
& a=6 b+24 \\
& b=b \\
& c=b+8
\end{align*}
$$

$$
\begin{aligned}
& \text { Put value of } a, b, c \text { in }(1) \\
& \begin{array}{l}
6 b+24)(b)(b+8)=27846 \\
6(b+4)(b)(b+8)=27846 \\
(b+4)(b)(b+8)=4641=13 \times 17 \times 3 \times 7=13 \times 17 \times 21 \\
\therefore \quad b=13 \\
\quad a=6 \times 13+24 \\
\\
\quad=78+24 \\
\\
\quad=102
\end{array} \\
& \quad \begin{array}{l}
\text { c }=b+8=13+8=21 \\
\therefore \quad a+b+c=102+13+21=136
\end{array}
\end{aligned}
$$

(b) Area of trapezium $=\frac{1}{2}(A B+G D) A K$

$$
=\frac{1}{2}(a+a(1+\sqrt{2}))\left(a+\frac{a}{\sqrt{2}}\right)=\frac{a^{2}}{2 \sqrt{2}}(4+3 \sqrt{2})
$$

6. (a) If a, b, c are positive real number such that no two of them are equal, show that $a(a-b)(a-c)+b(b-c)(b-a)+c(c-a)(c-b)$ is always positive
(b) In the figure below, P, Q, R, S are point on the sides of the triangle $A B C$ such that $C P=P Q=Q B=B A=A R=R S=S C$

Sol. (a) Let
$a>b>c$
$a(a-b)(a-c)-b(b-c)(a-b)+c(c-a)(c-b)$
$(a-b)[a(a-c)-b(b-c)]+c(c-a)(c-b)$
$(a-b)\left[a^{2}-a c-b^{2}+b c\right]+c(c-a)(c-b)$
$(a-b)\left[a^{2}-b^{2}-(a c-b c)\right]+c(c-a)(c-b)$
$(a-b)[(a+b)(a-b)-c(a-b)]+c(c-a)(c-b)$
$\underbrace{(a-b)^{2}[a+b-c]}_{T_{1}}+\underbrace{c(c-a)(c-b)}_{T_{2}}$
$\mathrm{T}_{1}>0, \mathrm{~T}_{2}>0$
$\therefore \mathrm{T}_{1}+\mathrm{T}_{2}>0$.
(b)

$\angle P C S=x$
$P C=P Q$
$\angle P Q C=x$
\angle QPR $=2 \times$ (Exterior angle)
$\angle \mathrm{QPR}=\angle \mathrm{QBP}=2 \mathrm{x}$
In \triangle SRC
SC = SR
$\angle \mathrm{SRC}=\angle \mathrm{SCR}=\mathrm{x}$
In \triangle SRC
At $\angle Q S R=2 x$
In $\quad \triangle B Q P$
$\angle B Q P=180-4 x$
AQS is a straight line
So,
$\angle A Q B=3 x$
$\mathrm{QB}=\mathrm{AB}$
$\angle B A Q=3 x$
AR = RS
\angle RAS $=2 x$
$\angle B A R=x$
In $\quad \triangle$ ARS
\angle ARS $=180-4 x$
$\angle \mathrm{ARB}=3 \mathrm{x}$
$A R=A B$
$\therefore \quad \angle \mathrm{ABQ}=\mathrm{x}$
$\therefore \quad \angle B A C=3 x$
$\angle A B C=3 x$
$\angle A C B=x$
In $\quad \triangle A B C$
$3 \mathrm{x}+3 \mathrm{x}+\mathrm{x}=180$
$7 \mathrm{x}=180$
$x=\frac{180}{7}$.

Announces

$V A D D A D N$

Score more. Pay less. Study more.

Your maximum efforts will reap you benefits... fivefold.

WIN VARDAAN

SCHOLARSHIP IN JUST THREE STEPS

What are the Vardaan Schemes?

Step1: Complete ResoFAST Application form
Step2 : Qualify ResoFAST followed by Personal Interview round Step3 : Avail Vardaan Scholarship.

Test Dates:
 on 29th October 2017 or 12th November 2017

VARDAAN-1: Above 90\% marks in interview + test
VARDAAN-2: Above 80\% \& less than 90\% marks in interview + test VARDAAN-3: Above 75\% and less than 80\% marks in interview + test

