

PAPER-1 (B.E./B. TECH.) OF JEE (MAIN)

CBT TEST PAPER

(WITH SOLUTION & ANSWER KEY)

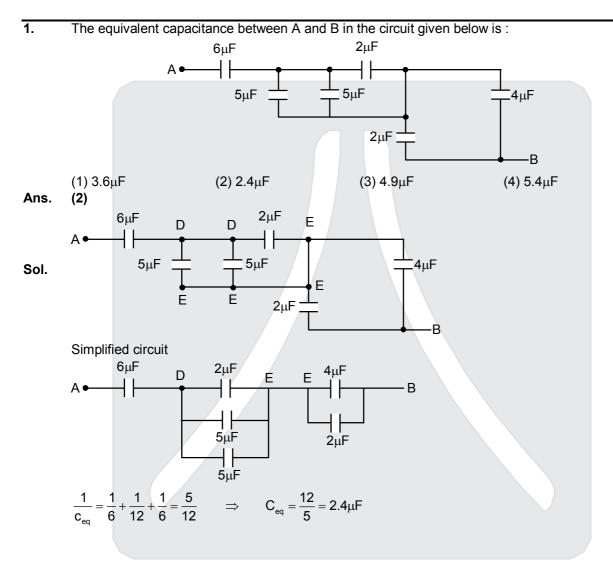
DATE: 15-04-2018

SUBJECT : PHYSICS, CHEMISTRY, MATHEMATICS

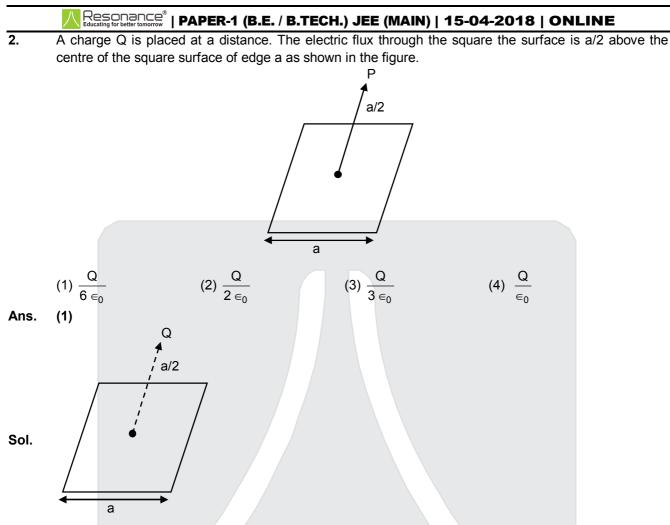
Resonance Eduventures Ltd.

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | 💿 08003 444 888 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

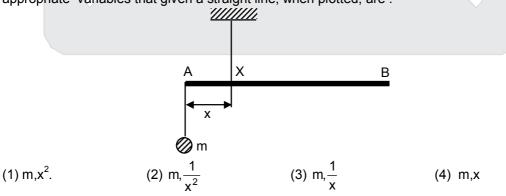
blog.resonance.ac.i


Toll Free : 1800 258 5555 💿 08003 444 888 盾 facebook.com/ResonanceEdu 😏 twitter.com/ResonanceEdu 🔡 www.youtube.com/resowatch

PHYSICS


Straight Objective Type

This section contains **30 multiple choice questions.** Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which **Only One** is correct.


Resonance Eduventures Limited

				www.resonance.ac.in	Page 1
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	🚟 www.youtube.com/resowatch	blog.resonance.ac.in

charged particle can be Considered at centre of a cube of side a, and given surface represents its one side.

- So flux $\phi = \frac{Q}{6\varepsilon_0}$
- **3.** A uniform rod AB is suspended from a point X, at a variable distance x from A, as shown. To make the rod horizontal, a mass m is suspended from its end A. A set of (m,x) values is recorded. The appropriate variables that given a straight line, when plotted, are :

Ans. (3)

Resonance Eduventures Limited

	is RESO at 56677 contact(Page 2
Toll Free : 1800 258 5555 🔕 08003 4	144 888 👖 facebook.com/ResonanceEdu	😏 twitter:com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

Sol.

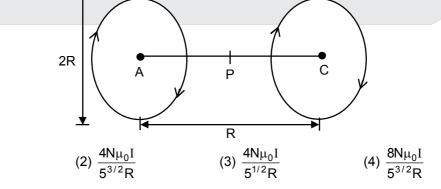
Mg ∅m

Balancing torque w.r.t. point of suspension

 $mg x = Mg\left(\frac{\ell}{2} - x\right)$ $mx = M\frac{\ell}{2} - Mx$ $m = \left(M\frac{\ell}{2}\right)\frac{1}{x} - M$ $y = \alpha \frac{1}{x} - C$ equation of a straight line

4. The energy required to remove the electron from a singly ionized Helium atom is 2.2 times the energy required to remove an electron from Helium atom. The total energy required to ionize the Helium atom completely is :

В


- **Sol.** Energy required to remove e⁻from singly ionized helium atom = 54.4 eV Energy required to remove e⁻form helium atom = x ev given 54.4 eV = $2.2x \Rightarrow x = 24.73$ eV Energy required to ionize helium atom = 79.12 eV
- **5.** A solution containing active cobalt ${}^{60}_{27}$ Co having activity of 0.8 µCi and decay constant λ is injected in an animal's body. If 1 cm³ of blood is drawn from the animal's body after 10 hrs of injection, the activity found was 300 decays per minute. What is the volume of blood that is flowing in the body ? (1Ci = 3.7 × 10¹⁰ decays per second and at t = 10 hrs e^{$-\lambda t$} = 0.84) (1) 4 liters (2) 6 liters (3) 5 liters (4) 7 liters
- Ans. (3)
- **Sol.** Let total volume of blood is v, initial activity $A_0 = O.Q \mu ci$ its activity at time $t = A = A0e^{-\lambda t}$ activity of x

volume
$$A^1 = \left(\frac{A}{V}\right) x = x \left(\frac{A_0}{V}\right) e^{-\lambda t}$$

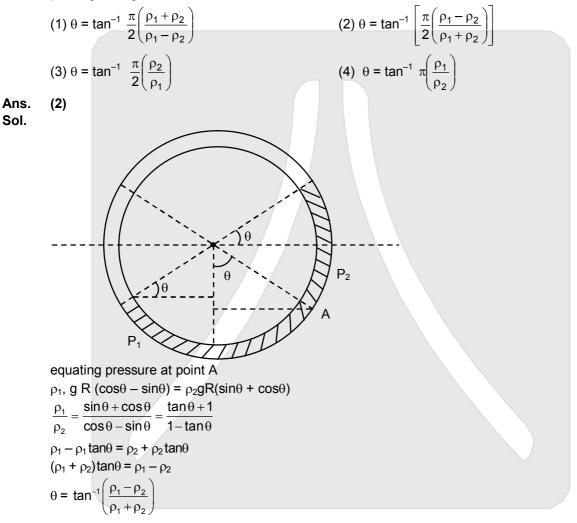
 $V = x \left(\frac{A_0}{A^1}\right) e^{-\lambda t}$
 $V = (1 \text{cm}^3) \left(\frac{8 \times 10^{-7} \times 3.7 \times 10^{10}}{\frac{300}{60}}\right) (0.84)$
 $= 4.97 \times 10^3 \text{ cm}^3 = 4.97 \text{ liter}$

Resonance Eduventures Limited

To Know	more: sms RES	O at 56677 contact@	@resonance.ac.in v	ww.resonance.ac.in	Page 3
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	У twitter.com/ResonanceEdu	🚻 www.youtube.com/resowatch	blog.resonance.ac.in

In a common emitter configuration with suitable bias, it is given that R_L is the load resistance and R_{BE} is 6. small signal dynamic resistance (input side). Then, voltage gain, current gain and power gain are given, respectively, by : β is current gain, I_B, I_C and I_E are respectively base, collector and emitter currents. $(1) \ \beta \frac{R_L}{R_{BE}}, \frac{\Delta I_C}{\Delta I_B}, \beta^2 \frac{R_L}{R_{BE}} \ (2) \ \beta \frac{R_L}{R_{BE}}, \frac{\Delta I_E}{\Delta I_B}, \beta^2 \frac{R_L}{R_{BE}} \ (3) \ \beta^2 \frac{R_L}{R_{BE}}, \frac{\Delta I_C}{\Delta I_B}, \beta \frac{R_L}{R_{BE}}, \frac{\Delta I_C}{R_{BE}}, \frac{\Delta I_C}{\Delta I_E}, \beta^2 \frac{R_L}{R_{BE}}, \frac{\Delta I_C}{A_E}, \beta^2 \frac{R_L}{R_{BE}}, \frac{\Delta I_C}{R_{BE}}, \frac{\Delta I_C}{R_{A$ Ans. (1) Sol. From NCERT Current gain $\beta = \frac{\Delta I_{c}}{\Delta I}$ Voltage gain $A_v = \frac{\Delta V_{CE}}{R_{pr}\Delta I_p} = B \frac{R_{\perp}}{R_{pr}}$ Power gain $A_p = \beta Av = \beta^2 \frac{R_{\perp}}{R_{pr}}$ A body of mass m is moving in a circular orbit of radius R about a planet of mass M. At some instant, it 7. splits into two equal masses. The first mass moves in a circular orbit of radius $\frac{R}{2}$. and the other mass, in a circular orbit of radius $\frac{3R}{2}$. The difference between the final and initial total energies is : $(2) - \frac{GMm}{2R} \qquad (3) - \frac{GMm}{6R}$ (1) $+\frac{Gm}{6R}$ (4) $\frac{\text{GMm}}{2\text{R}}$ Ans. (3) $E_i = -\frac{GMm}{2R}$ Sol. $\mathsf{E}_{\mathsf{f}} = -\frac{\mathsf{GMm}/2}{2\left(\frac{\mathsf{R}}{2}\right)} - \frac{\mathsf{GMm}/2}{2\left(\frac{3\mathsf{R}}{2}\right)} = -\frac{\mathsf{GMm}}{2\mathsf{R}} - \frac{\mathsf{GMm}}{6\mathsf{R}} = -\frac{4\mathsf{GMm}}{6\mathsf{R}} = -\frac{2\mathsf{Mm}}{3\mathsf{R}}$ $E_f - E_i = \frac{GMm}{R} \left(-\frac{2}{3} + \frac{1}{2} \right) = -\frac{GMm}{6R}$ 8. A Helmholtz coil has a pair of loops, each with N turns and radius R. They are placed coaxially at distance R and the same current I flows through the loops in the same direction. The magnitude of magnetic field at P, midway between the centres A and C, is given by [Refer to figure given below]:

Ans. (4)

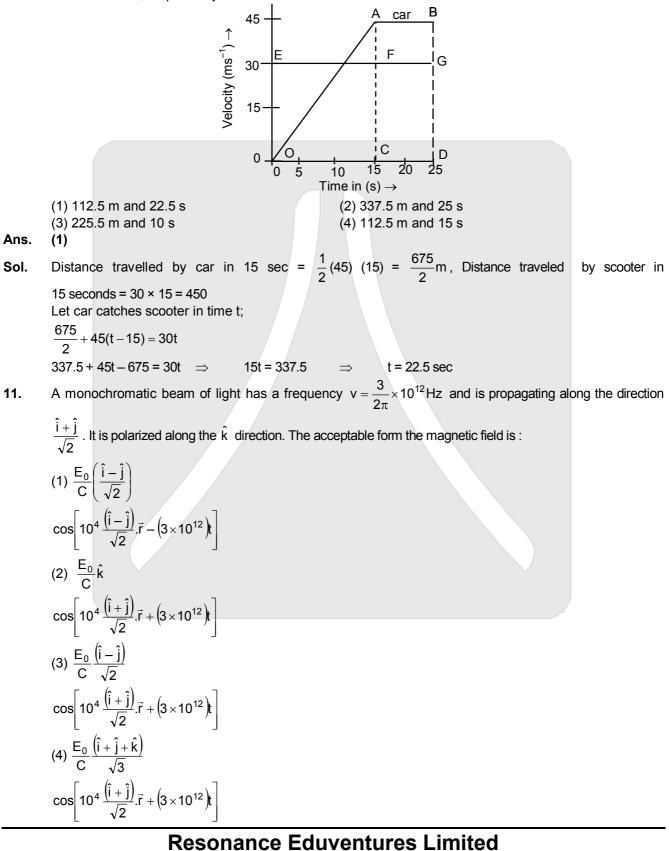

(1) $\frac{8N\mu_0I}{5^{1/2}R}$

Resonance Eduventures Limited

				www.resonance.ac.in	Page 4
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	У twitter.com/ResonanceEdu	🚻 www.youtube.com/resowatch	blog.resonance.ac.in

Sol. $B = 2 \left(\frac{\mu_0 NIR^2}{2 \left(R^2 + \frac{R^2}{4} \right)^{3/2}} \right) = \frac{\mu_0 NIR^2}{\frac{5^{3/2}}{8}} = \frac{8\mu_0 NI}{5^{3/2}R}$

9. A thin uniform tube is bent into a circle of radius r in the vertical plane. Equal volumes of two immiscible liquids, whose densities are ρ_1 and ρ_2 ($\rho_1 > \rho_2$), fill half the circle. The angle θ between the radius vector passing through the common interface and the vertical is :



Resonance Eduventures Limited

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | Page | 5 | Toll Free : 1800 258 5555 🔊 08003 444 888 📑 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔛 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

10. The velocity-time graphs of a car and a scooter are shown in the figure. (i) The difference between the distance travelled by the car and the scooter in 15 s and (ii) the time at which the car will catch up with the scooter are, respectively.

				www.resonance.ac.in	Page 6
Toll Free : 1800 258 5555	<u>)</u> 08003 444 888	facebook.com/ResonanceEdu	У twitter.com/ResonanceEdu	www.youtube.com/resowatch	blog.resonance.ac.in

- Ans. (3)
- **Sol.** $\hat{E} \times \hat{B}$ should give direction of wave propagation

$$\Rightarrow \widehat{K} \times \widehat{B} \parallel \frac{\widehat{i} + \widehat{j}}{\sqrt{2}}$$
option – 1

$$h-1 \qquad \hat{K} \times \left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right) = \frac{\hat{j}-(-\hat{i})}{\sqrt{2}} = \frac{\hat{i}+\hat{j}}{\sqrt{2}} \left| \left| \frac{\hat{i}+\hat{j}}{\sqrt{2}} \right| \right|$$

option -2 and 4 does not satisfy this.

wave propagation vector \hat{K} should be along $\frac{i+j}{\sqrt{2}}$

So correct option is 3.

12. Take the mean distance of the moon and the sun from the earth to be 0.4×10^6 km and 150×10^6 km respectively. Their masses are 8×10^{22} kg and 2×10^{30} kg respectively. The radius of the earth is 6400km. Let ΔF_1 be the difference in the forces exerted by the moon at the nearest and farthest point on the earth and ΔF_2 be the difference in the force exerted by the sun at the nearest and farthest points

on the earth. Then, the number closest to
$$\frac{\Delta F_1}{\Delta F_2}$$
 is:
(1) 6 (2) 10^{-2} (3) 2 (4) 0.6
Ans. (3)
Sol. $F_1 = \frac{GM_em}{r_1^2}$ $F_2 = \frac{GM_eM_s}{r_2^2}$
 $\Delta F_1 = -\frac{2GM_em}{r_1^3} \Delta r_1$ $\Delta F_2 = -\frac{2GM_eM_s}{r_2^3} \Delta r_2$
 $\frac{\Delta F_1}{\Delta F_2} = \frac{m\Delta r_1}{r_1^3} \frac{r_2^3}{M_s \Delta r_2} = \left(\frac{m}{M_s}\right) \left(\frac{r_2^3}{r_1^3}\right) \left(\frac{\Delta r_1}{\Delta r_2}\right)$
using $\Delta r_1 = \Delta r_2 = 2 R_{earth}$
 $m = 8 \times 10^{22} \text{ kg}$
 $M_s = 2 \times 10^{30} \text{ kg}$
 $r_1 = 0.4 \times 10^6 \text{ km}$
 $r_2 = 150 \times 10^6 \text{ km}$
we get $\frac{\Delta F_1}{\Delta F_2} = 2$

A planoconvex lens becomes an optical system of 28cm focal length when its plane surface is silvered and illuminated from left to right as shown in fig-A
 If the same lens is instead silvered on the curved surface and illuminated from other side as in fig. B, it acts like an optical system of focal length 10 cm. The refractive index of the material of lens is:

	\longrightarrow		
	Fig .A	Fig .B	
(1) 1.55 (1)	(2) 1.50	(3) 1.75	(4)1.51

Ans. (1

Resonance Eduventures Limited

			-	www.resonance.ac.in	Page 7
Toll Free : 1800 258 5555 🧕	08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	🚟 www.youtube.com/resowatch	blog.resonance.ac.in

Sol. Case-1

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\begin{array}{c}
\end{array}{} \\
\end{array}{} \\
\begin{array}{c}
\end{array}{} \\
\end{array}{} \\
\begin{array}{c}
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\begin{array}{c}
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\begin{array}{c}
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\begin{array}{c}
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\begin{array}{c}
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\begin{array}{c}
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\end{array}{} \\
\begin{array}{c}
\end{array}{} \\
\begin{array}{c}
\end{array}{} \\
\bigg{} \end{array}$$
}\begin{array}
\bigg{} \\
\bigg{} \end{array}

}
\bigg{} \\
\bigg{} \\
\bigg{} \\
\bigg{} \end{array}

}
\bigg{} \\
\bigg{} \\
\bigg{} \\
\bigg{} \end{array}

}
\bigg{} \\
\bigg{} \\
\bigg{} \end{array}

}
\bigg{} \\
\bigg{} \end{array}

}
\bigg{} \\
\bigg{} \\
\bigg{} \end{array}

}
\bigg{} \\
\bigg{}
} \\
\bigg{} \\
\bigg{} \\
\bigg{} \\
\bigg{}
} \\
\bigg{} \\
\bigg{} \end{array}

} \\
\bigg{} \\
\bigg{} \\
\bigg{} \\
\bigg{} \\
\bigg{}
} \\
\bigg{} \\
\bigg{}
} \\
\bigg{} \\
\bigg{} \end{array}

} \\
\bigg{} \\
\bigg{} \end{array}

} \\
\bigg{} \end{array}

} \\
\bigg{} \\
\bigg{} \end{array}

} \\
\bigg{} \end{array}

} \\
\bigg{} \end{array}

} \\
\bigg{} \end{array}

} \\
\bigg{} \\
\bigg{} \end{array}

} \\
\bigg{} \end{array}
\bigg{} \end{array}

} \\
\bigg{} \end{array}

} \\
\bigg{} \bigg{} \end{array}

} \\
\bigg{} \bigg{} \end{array}

} \\
\bigg{} \end{array}

} \\
\bigg{} \bigg{} \end{array}

} \\
\bigg{} \bigg{} \end{array}

} \\
\bigg{} \bigg{} \bigg{} \end{array}

} \bigg{} \end{array}
\bigg{} \bigg{} \end{array}

} \\
\bigg{} \end{array}
\bigg{} \bigg{} \end{array}

} \\
\bigg{} \bigg{} \bigg{} \bigg{}

14. One mole of an ideal monatomic gas is compressed isothermally in a rigid vessel to double its pressure at room temperature, 27°C. The done on the gas will be :

	(1) 300R	(2) 300R In 2	(3) 300 ln 6	(4) 300R In 7
Ans.	(2)			
Sol.	Work done or	n gas = nRT $ln\left(\frac{p_f}{p_i}\right)$ = R(300)	ℓn(2) = 300Rℓn2	

15. An automobile, travelling at 40 km/h, can be stopped at a distance of 40 m by applying brakes. If the same automobile is travelling at 80 km/h, the minimum stopping distance, in metres, is (assume no skidding) :

(1) 150m (2) 100m (3) 75m (4) 160m

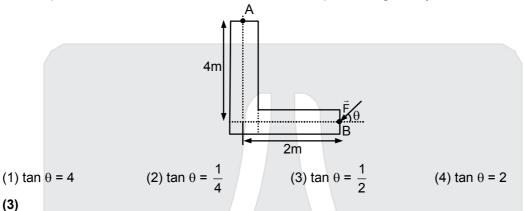
 $\frac{u^2}{2a}$

$$\frac{S_1}{S_2} = \frac{u_1^2}{u_2^2} \implies S_2 = \left(\frac{u_2}{u_1}\right)^2 S_1 = (2)^2 (40) = 160 \text{ m}$$

Resonance Eduventures Limited

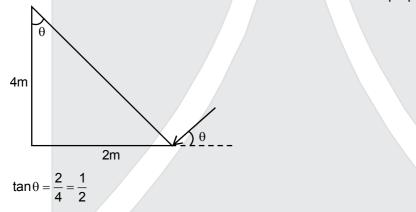
To Know	more: sms RES	O at 56677 contact@	Presonance.ac.in v	www.resonance.ac.in	Page 8
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	У twitter.com/ResonanceEdu	👪 www.youtube.com/resowatch	blog.resonance.ac.in

		NLINE
16.	A carnot's engine works as a refrigerator between 250K and 300K. It receives 500 reservoir at the lower temperature. The amount of work done in each cycle to operate (1) 772 J (2) 420 J (3) 2100 J (4) 2520 J	cal heat from the
Ans.	s. (2)	
Sol.	Efficiency = $1 - \frac{T_2}{T_1} = \frac{W}{Q_2 + W}$	
	$\Rightarrow \qquad 1 - \frac{250}{300} = \frac{W}{Q_2 + W}$	
	$W = \frac{Q_2}{5} = \frac{500 \times 4.2}{5} J = 420 J$	
17.	In a screw gauge, 5 complete rotations of the screw cause it to move a linear dist There are 100 circular scale divisions. The thickness of a wire measured by this scre reading of 4 main scale divisions and 30 circular scale divisions. Assuming negligib thickness of the wire is :	ew gauge gives a
Ans.	(1) 0.4300 cm (2) 0.3150 cm (3) 0.0430 cm (4) 0.2150 cm	n
Sol.	. Least Count = $\frac{0.25}{5 \times 100}$ cm = 5 × 10 ⁻⁴ cm	
	Reading = 4×0.05 cm + $30 \times 5 \times 10^{-4}$ cm = (0.2 + 0.0150) cm = 0.2150 cm	
18.	The number of amplitude modulated broadcast stations that can be accommodated in width for the highest modulating frequency 15 kHz will be :	n a 300 kHz band
Ans.	(1) 15 (2) 20 (3) 8 (4) 10 s. (4)	
Sol.		
	No of channels accommodate = $\frac{300 \text{kHz}}{30 \text{kHz}} = 10$	
19.	An ideal capacitor of capacitance 0.2 μ F is charged to a potential difference of 10 battery is then disconnected. The capacitor is then connected to an ideal inductor of 0.5 mH. The current at a time when the potential difference across the capacitor is 5V (1) 0.15 A (2) 0.17 A (3) 0.34 A (4) 0.25 A	of self inductance
Ans.	s. (2)	
Sol.	Using energy conservation $\frac{1}{2} \times 0.2 \times 10^{-6} \times 10^{2} + 0 = \frac{1}{2} \times 0.2 \times 10^{-6} \times 5^{2} + \frac{1}{2} \times 0.5 \times 10^{-3} I^{2}$	
	$I = \sqrt{3} \times 10^{-1} A = 0.17 A$	
20.	Light of wavelength 550 nm falls normally on a slit of width 22.0 × 10^{-5} cm. The angu second minima from the central maximum will be (in radians) :	lar position of the
	(1) $\frac{\pi}{4}$ (2) $\frac{\pi}{8}$ (3) $\frac{\pi}{12}$ (4) $\frac{\pi}{6}$	
Ans.		


Resonance Eduventures Limited

			-	ww.resonance.ac.in	Page 9
Toll Free : 1800 258 5555	<u>)</u> 08003 444 888	facebook.com/ResonanceEdu	У twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

Sol. If angular position of 2^{nd} maxima from central maxima is θ then


$$\sin\theta = \frac{3\lambda}{2a} = \frac{3 \times 550 \times 10^{-10}}{2 \times 22 \times 10^{-10}}$$
$$\theta \simeq \frac{\pi}{8} \text{ rad}$$

21. A force of 40 N acts on a point B at the end of an L-shaped object as shown in the figure. The angle θ that will produce maximum moment of the force about point A is given by :

Ans.

Sol. Moment of force will be maximum when line of action of force is perpendicular to line AB.

- A tuning fork vibrates with frequency 256 Hz and gives one beat per second with the third normal mode of vibration of an open pipe. What is the length of the pipe ? (Speed of sound in air is 340 ms⁻¹)
 (1) 220 cm
 (2) 200 cm
 (3) 190 cm
 (4) 180 cm
- Ans. (2)
- Sol. Organ pipe will have frequency either 255 or 257 Hz Using 255Hz

$$255 = \frac{3V}{2\ell} \qquad \ell = \frac{3 \times 340}{2 \times 255} \,\mathrm{m}$$

 ℓ = 200 cm.

Resonance Eduventures Limited

				www.resonance.ac.in	Page 10
Toll Free : 1800 258 5555	<u>)</u> 08003 444 888	facebook.com/ResonanceEdu	У twitter.com/ResonanceEdu	www.youtube.com/resowatch	🕒 blog.resonance.ac.in

- 23. A body of mass M and charge q is connected to a spring of spring constant k. It is oscillating along x-direction about its equilibrium position, taken to be at x = 0, with an amplitude A. An electric field E is applied along the x-direction. Which of the following statements is correct?
 - (1) The total energy of the system is $\frac{1}{2}m\omega^2 A^2 + \frac{1}{2}\frac{q^2 E^2}{k}$.
 - (2) The new equilibrium position is at a distance $\frac{2qE}{k}$ from x = 0.
 - (3) The new equilibrium position is at a distance $\frac{qE}{2k}$ from x = 0.
 - (4) The total energy of the system is $\frac{1}{2}$ m ω^2 A² $\frac{1}{2}\frac{q^2E^2}{k}$.
- Ans. (1)

Ans.

Sol. Equilibrium position will shift to point where resultant force = 0

$$kx_{eq} = qE \Rightarrow x_{eq} = \frac{qE}{k}$$

Energy $\frac{1}{2}m\omega^2 \left[A^2 + \left(\frac{qE}{k}\right)^2 \right] = \frac{1}{2}m\omega^2 A^2 + \frac{1}{2}\frac{q^2E^2}{k}$

24. A given object takes n times more time to slide down a 45° rough inclined plane as it takes to slide down a perfectly smooth 45° incline. The coefficients of kinetic friction between the object and the incline is :

(1)
$$\sqrt{1-\frac{1}{n^2}}$$
 (2) $1-\frac{1}{n^2}$ (3) $\frac{1}{2-n^2}$ (4) $\sqrt{\frac{1}{1-n^2}}$
(2)

Sol. Time taken to slide along smooth surface

$$s = \frac{1}{2}g\sin 45^{\circ}t_1^2$$
$$t_1 = \sqrt{\frac{2\sqrt{2s}}{g}}$$

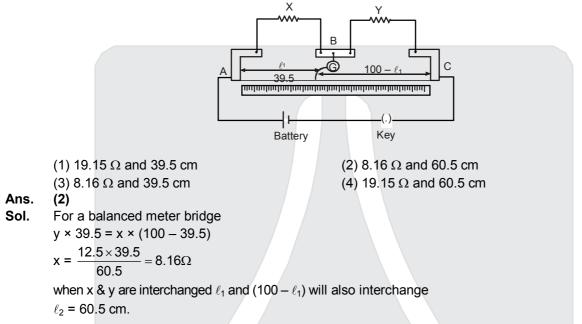
Time taken to slide along rough surface

$$S = \frac{1}{2} (g \sin 45^\circ - \mu g \cos 45^\circ) t_2^2$$

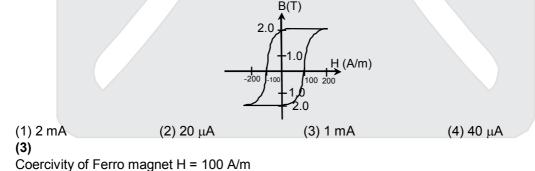
$$t_2 = \sqrt{\frac{2\sqrt{2s}}{g(1-\mu)}}$$

$$t_2 = nt_1$$

$$\frac{2\sqrt{2s}}{g(1-\mu)} = n^2 \times \frac{2\sqrt{2s}}{g} \implies 1-\mu = \frac{1}{n^2} \implies \mu = 1 - \frac{1}{n^2}$$


- **25.** The relative error in the determination of the surface area of a sphere is α . Then the relative error in the determination of its volume is :
 - (1) $\frac{3}{2}\alpha$ (2) $\frac{2}{3}\alpha$ (3) α (4) $\frac{5}{2}\alpha$ (1)
- Ans. (

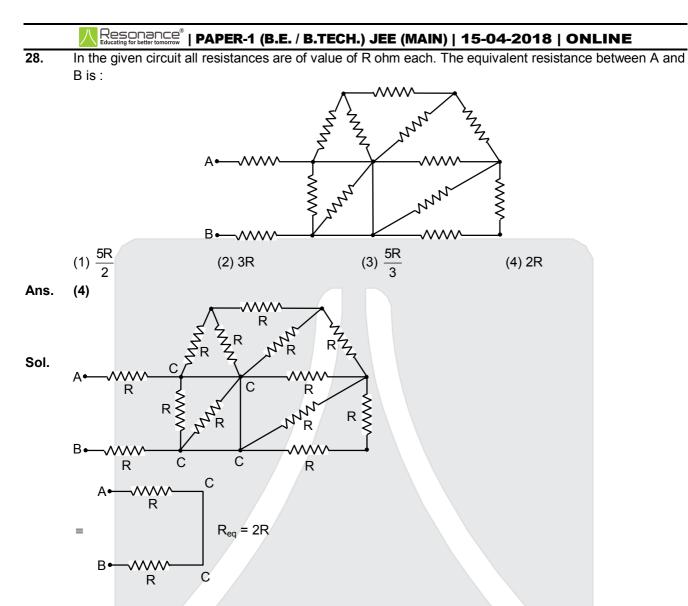
Resonance Eduventures Limited


				www.resonance.ac.in	
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	У twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

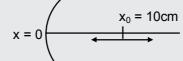
Sol.	$\frac{\Delta s}{s} = 2 \times \frac{\Delta r}{r}$	$\frac{\Delta v}{v} = 3 \times \frac{\Delta r}{r}$
	$\frac{\Delta v}{v} = \frac{3}{2} \alpha$	

26. In a meter bridge as shown in the figure it is given that resistance $Y = 12.5 \Omega$ and that the balance is obtained at a distance 39.5 cm from end A (by Jockey J). After interchanging the resistances X and Y a new balance point is found at a distance I_2 from end A. What are the values of X and I_2 ?

27. The B-H curve for a ferromagnet is shown in the figure. The ferromagnet is placed inside a long solenoid with 1000 turns/cm. The current that should be passed in the solenoid to demagnetise the ferromagnet completely is :


Ans.

Sol. Coercivity of Ferro magnet H = 100 A/m pI = 100


$$II = \frac{100}{10^5} = 1mA$$

Resonance Eduventures Limited

				www.resonance.ac.in	
Toll Free : 1800 258 5555	<u>)</u> 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	🕒 blog.resonance.ac.in

29. A particle is oscillating on the x-axis with an amplitude 2cm about the point $x_0 = 10$ cm with a frequency ω . A concave mirror of focal length 5cm is placed at the origin (see figure).

Identify the correct statements?

(A) The image executes periodic motion

- (B) The image executes non-periodic motion
- (C) The turning points of the image are asymmetric w.r.t. the image of the point at x = 10 cm.
- (D) The distance between the turning points of the oscillation of the image is $\frac{100}{21}$ cm.

(1) (B, C)	(2) (A, C, D)	(3) (A, D)	(4) (B, D)

Ans. (2)

Resonance Eduventures Limited

To Know more: sms RES				Page 13
Toll Free : 1800 258 5555 💿 08003 444 888	facebook.com/ResonanceEdu	У twitter.com/ResonanceEdu	👪 www.youtube.com/resowatch	blog.resonance.ac.in

When object is at 8 cm

$$V_{1} = \frac{f \times u}{u - f} = -\frac{40}{3} \text{ cm}$$
When object is at 12 cm

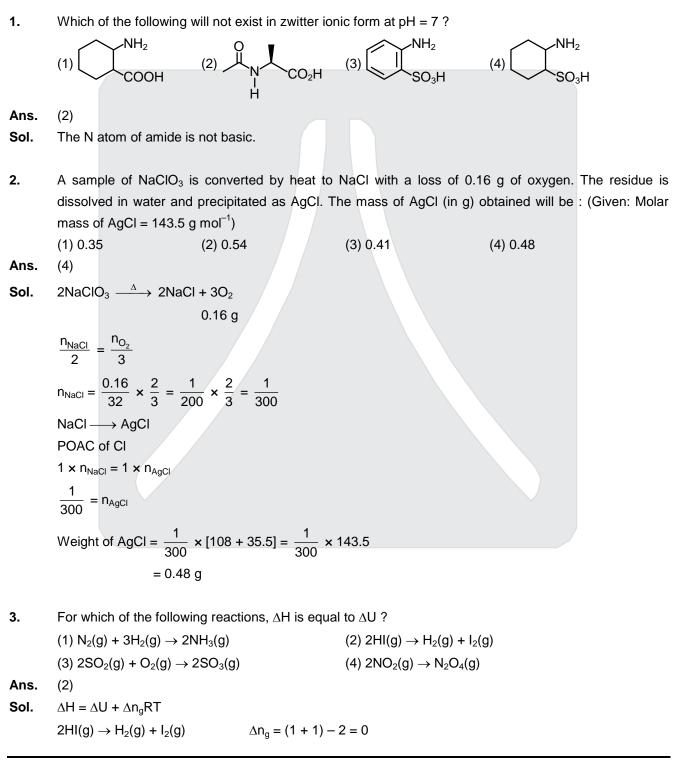
$$V_{2} = -\frac{60}{7} \text{ cm}$$
Separation = $|V_{1} - V_{2}| = \frac{100}{21} \text{ cm}$
So A, C and D are correct

Sol.

Ans. Sol.

30. Two electrons are moving with non-relativistic speeds perpendicular to each other. If corresponding de Broglie wavelengths are λ_1 and λ_2 their de Broglie wavelength in the frame of reference attached to their centre of mass is :

(1)
$$\frac{1}{\lambda_{CM}} = \frac{1}{\lambda_1} + \frac{1}{\lambda_2}$$
 (2) $\lambda_{CM} = \frac{2\lambda_1\lambda_2}{\sqrt{\lambda_1^2 + \lambda_2^2}}$ (3) $\lambda_{CM} = \lambda_1 = \lambda_2$ (4) $\lambda_{CM} = \left(\frac{\lambda_1 + \lambda_2}{2}\right)$
(2)
Momentum of each electron $\frac{h}{\lambda_1} \hat{i} & \frac{h}{\lambda_2} \hat{j}$
Velocity of centre of mass
 $V_{om} = \frac{h}{2m\lambda_1} \hat{i} + \frac{h}{2m\lambda_2} \hat{j}$
Velocity of 1st particle about centre of mass
 $V_{tem} = \frac{h}{2m\lambda_1} \hat{i} - \frac{h}{2m\lambda_2} \hat{j}$
 $\lambda_{cm} = \frac{h}{\sqrt{\frac{h^2}{4\lambda_1^2} + \frac{h^2}{4\lambda_2^2}}} = \frac{2\lambda_1\lambda_2}{\sqrt{\lambda_1^2 + \lambda_2^2}}$


Resonance Eduventures Limited

			-	www.resonance.ac.in	Page 14
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	У twitter.com/ResonanceEdu	🚻 www.youtube.com/resowatch	blog.resonance.ac.in

CHEMISTRY

Straight Objective Type

This section contains **30 multiple choice questions.** Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which **Only One** is correct.

Resonance Eduventures Limited

				www.resonance.ac.in	Page 15
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEd	lu 🛗 www.youtube.com/resowatch	blog.resonance.ac.in

4. N_2O_5 decomposes to NO_2 and O_2 and follows first order kinetics. After 50 minutes, the pressure inside the vessel increases from 50 mm Hg to 87.5 mm Hg. The pressure of the gaseous mixture after 100 minute at constant temperature will be :

(1) 136.25 mm Hg (2) 106.25 mm Hg

(3) 175.0 mm Hg (

(4) 116.25 mm Hg

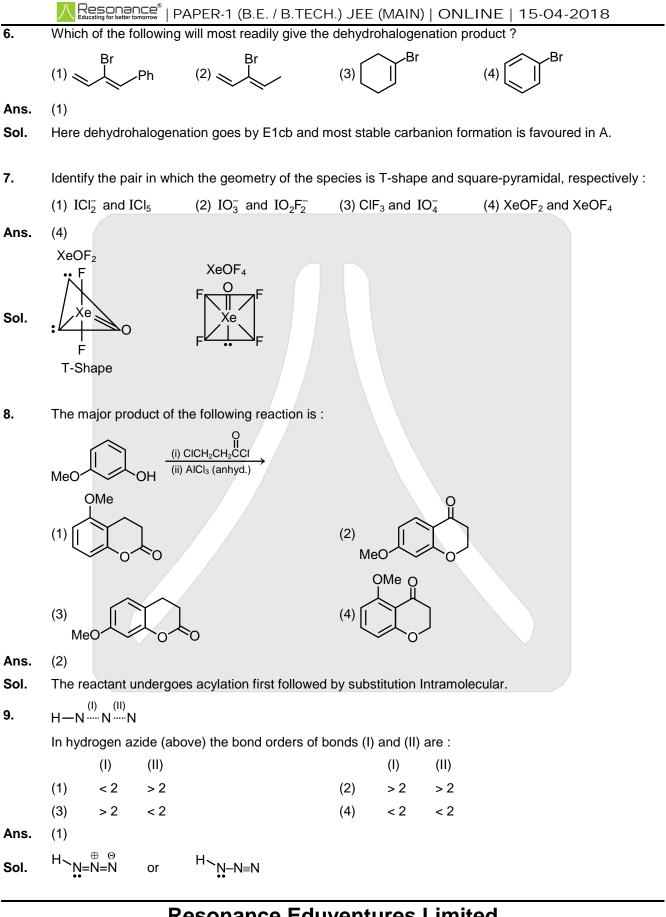
Ans. Sol. (2)

 $N_2O_5 \longrightarrow 2NO_2 + \frac{1}{2}O_2$ 0 t = 050 0 <u>p</u>1 2 50-p1 $2p_1$ t = 50 min.= 25 <u>p</u>2 t = 100 min. 50 – p₂ 2p₂ 2 = 12.5 $50 - p_1 + 2p_1 + \frac{p_1}{2} = 87.5$ $50 + \frac{3p_1}{2} = 87.5$ $\frac{3p_1}{2} = 37.5$ $p_1 = \frac{37.5 \times 2}{3} = 25$ 50 minute is half life period for 100 minute (2 half life) $50 - p_2 = 12.5$ $p_2 = 37.5 \text{ mm of Hg}$ Total pressure at 100 minute $= 50 - p_2 + 2p_2 + \frac{p_2}{2}$ $=50 + \frac{3p_2}{2} = 50 + \frac{3}{2} \times 37.5$ = 50 + 56.25= 106.25 mm of Hg

5. In the molecular orbital diagram for the molecular ion, N_2^+ , the number of electrons in the σ_{2p} molecular orbital is :

(1) 0 (2) 2 (3) 3 (4) 1

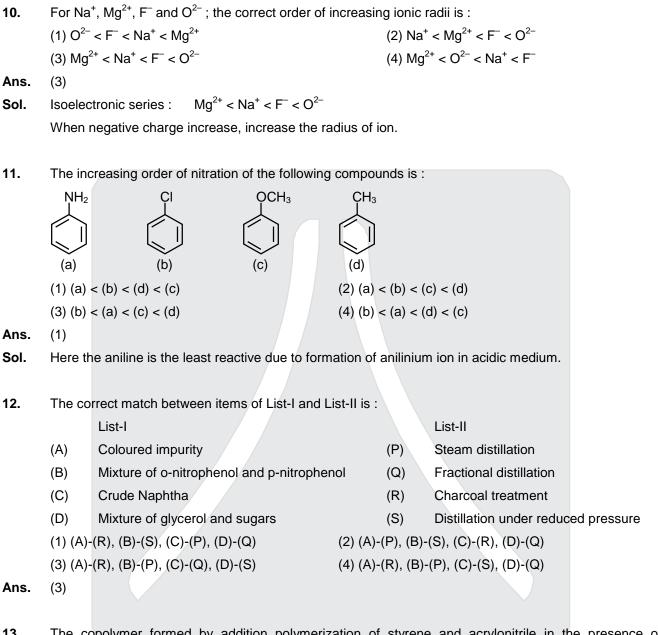
Ans.

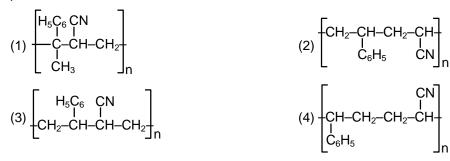

(4)

Sol.
$$N_2^+ \to \sigma_{1s^2}, \ \sigma_{1s^2}^*, \ \sigma_{2s^2}, \ \sigma_{2s^2}^*, \ [\pi_{2p_x}^2 = \pi_{2p_y}^2]\sigma_{2p_z}^1$$

Number of electron in $\sigma_{2p_{\tau}}$ is 1

Resonance Eduventures Limited

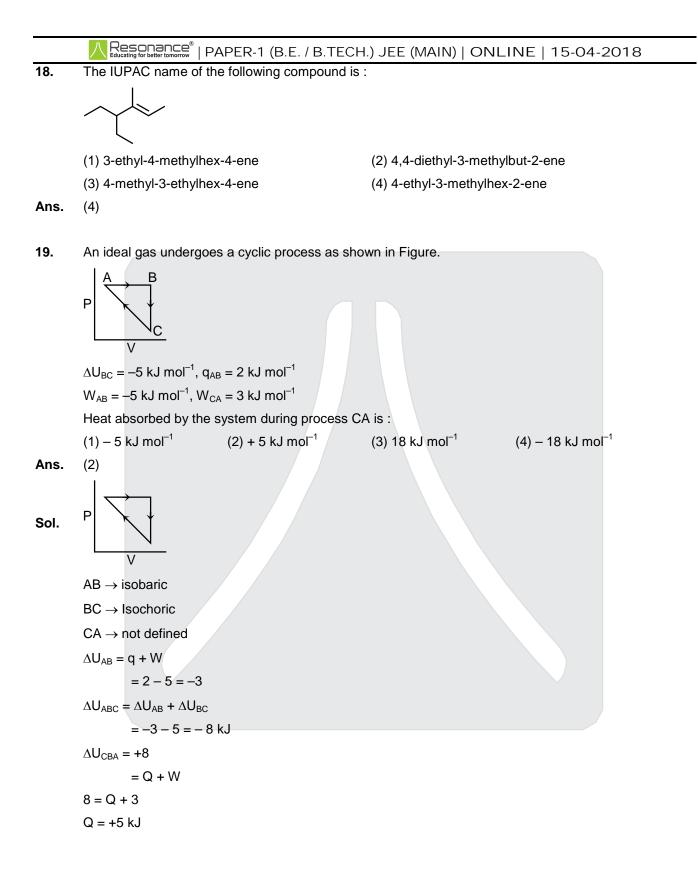

				ww.resonance.ac.in	Page 16
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	🚟 www.youtube.com/resowatch	blog.resonance.ac.in


Resonance Eduventures Limited

				www.resonance.ac.in	Page 17
Toll Free : 1800 258 5555	<u>)</u> 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

Resonance[®] | PAPER-1 (B.E. / B.TECH.) JEE (MAIN) | ONLINE | 15-04-2018

13. The copolymer formed by addition polymerization of styrene and acrylonitrile in the presence of peroxide is :


Ans. (2)

Resonance Eduventures Limited

				www.resonance.ac.in	Page 18
Toll Free : 1800 258 5555	<u>)</u> 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	www.youtube.com/resowatch	blog.resonance.ac.in

14.	Which of the following is a Lewis acid ? (1) PH ₃ (2) NF ₃	(3) NaH	(4) B(CH ₃) ₃
ns.	(4)	(3) Nali	
	CH ₃		
iol.	│ (6e⁻)(Lewis Acid)		
	H ₃ C ^C CH ₃		
5.	Which of the following statements about	t colloids is False ?	
	(1) When silver nitrate solution is add	ed to potassium iodide solution	on a negatively charged colloida
	solution is formed.	lower then true colution of our	ma concentration of a colute
	(2) Freezing point of colloidal solution is(3) Colloidal particles can pass through		The concentration of a solute.
	(4) When excess of electrolyte is added		particle will be precipitated.
Ans.	(2)		
Sol.	Freezing point of colloidal solution is hig	gher than true solution at same	e concentration of a solute.
6.	Which of the following is the correct stru	ucture of Adenosine ?	
	NH ₂	NH ₂	
	$(1) \bigvee_{N \to N} (2) \bigvee_{N \to N} (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)$	NH ₂ (3) (1) N	(4) (1) (4)
	l l Ribose Ribo	se Ribose	Ribose
Ans.	(1)		
7.	The correct combination is :		
	(1) $[NiCl_4]^2$ – square-planar; $[Ni(CN)_4]^2$		
	(2) $[Ni(CN)_4]^{2-}$ – tetrahedral; $[Ni(CO)_4]^2$		
	(3) $[NiCl_4]^{2-}$ – paramagnetic ; $[Ni(CO)_4]$ (4) $[NiCl_4]^{2-}$ – diamagnetic ; $[Ni(CO)_4]$ –		
Ans.	$(4) [N(C1_4] - Gamagnetic, [N(CO)_4] - (3)$	Square-planal	
Sol.			
	[NiCl ₄] ²⁻	[Ni(CO) ₄]	
	sp ³	sp ³	
		ÇO	
	Paramagnetic (2 unpaired electron)		
		oc ^{_/Ni} _co co	
	$Ni^{2+} \rightarrow [Ar]3d^{8}, 4s^{0}, 4p^{0}$	$Ni(O) \rightarrow [Ar]3d^8, 4s^2, 4p^0$	
		CO is S.F.L.	
	Cl⁻ (W.F.L.) (No pairing)	[Ar] 3d ¹⁰ 4s ⁰ , 4p ⁰	
		sp ³	
		(Tetrahedral)	

To Know	more: sms RES	O at 56677 contact@	resonance.ac.in	www.resonance.ac.in	Page 19
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	👑 www.youtube.com/resowatch	🕒 blog.resonance.ac.in

Resonance Eduventures Limited

To Know	more: sms RES	O at 56677 contact@	⊉resonance.ac.in w	ww.resonance.ac.in	Page 20
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	У twitter.com/ResonanceEdu	🚟 www.youtube.com/resowatch	blog.resonance.ac.in

20.Ejection of the photoelectron from metal in the photoelectric effect experiment can by sto applying 0.5 V when the radiation of 250 nm is used. The work function of the metal is : (1) 4 eV (2) 5.5 eV (3) 4.5 eV (4) 5 eVAns.(3)Sol. $\lambda = 250 \text{ nm} = 2500 \text{ Å}$ $E = \frac{hc}{\lambda} = \frac{12400}{2500} = 4.96 \text{ eV}$ KE = stopping potential = 0.5 eV $E = W_0 + K.E.$ $4.96 = W + 0.5$ $W_0 = 4.46 \approx 4.5 \text{ eV}$ 21.In graphite and diamond, the percentage of p-characters of the hybrid orbitals in hybridization respectively : (1) 33 and 25 (2) 67 and 75 (3) 50 and 75 (3) 50 and 75 (4) 33 and 75Ans.(2)Sol.Graphite sp ² hybridisation $\% P = \frac{2}{3} \times 100 = 67 \%$	
(1) 4 eV (2) 5.5 eV (3) 4.5 eV (4) 5 eV Ans. (3) Sol. $\lambda = 250 \text{ nm} = 2500 \text{ Å}$ $E = \frac{\text{hc}}{\lambda} = \frac{12400}{2500} = 4.96 \text{ eV}$ KE = stopping potential = 0.5 eV $E = W_0 + \text{K.E.}$ 4.96 = W + 0.5 $W_0 = 4.46 \approx 4.5 \text{ eV}$ 21. In graphite and diamond, the percentage of p-characters of the hybrid orbitals in hybridizar respectively : (1) 33 and 25 (2) 67 and 75 (3) 50 and 75 (4) 33 and 75 Ans. (2) Sol. Graphite Diamond sp ³ hybridisation	ition are
Ans.(3)Sol. $\lambda = 250 \text{ nm} = 2500 \text{ Å}$ $E = \frac{hc}{\lambda} = \frac{12400}{2500} = 4.96 \text{ eV}$ KE = stopping potential = 0.5 eV $E = W_0 + K.E.$ $4.96 = W + 0.5$ $W_0 = 4.46 \approx 4.5 \text{ eV}$ 21.In graphite and diamond, the percentage of p-characters of the hybrid orbitals in hybridizer respectively : (1) 33 and 25 (2) 67 and 75 (3) 50 and 75 (4) 33 and 75Ans.(2)Sol.GraphiteGraphiteDiamond sp ³ hybridisation	ition are
Sol. $\lambda = 250 \text{ nm} = 2500 \text{ Å}$ $E = \frac{hc}{\lambda} = \frac{12400}{2500} = 4.96 \text{ eV}$ KE = stopping potential = 0.5 eV $E = W_0 + K.E.$ 4.96 = W + 0.5 $W_0 = 4.46 \approx 4.5 \text{ eV}$ 21. In graphite and diamond, the percentage of p-characters of the hybrid orbitals in hybridizar respectively : (1) 33 and 25 (2) 67 and 75 (3) 50 and 75 (4) 33 and 75 Ans. (2) Sol. Graphite Diamond sp ³ hybridisation	ition are
$E = \frac{hc}{\lambda} = \frac{12400}{2500} = 4.96 \text{ eV}$ $KE = \text{stopping potential} = 0.5 \text{ eV}$ $E = W_0 + \text{K.E.}$ $4.96 = W + 0.5$ $W_0 = 4.46 \approx 4.5 \text{ eV}$ 21. In graphite and diamond, the percentage of p-characters of the hybrid orbitals in hybridization respectively: (1) 33 and 25 (2) 67 and 75 (3) 50 and 75 (4) 33 and 75 Ans. (2) Sol. $\frac{\text{Graphite}}{\text{sp}^2 \text{ hybridisation}} \frac{\text{Diamond}}{\text{sp}^3 \text{ hybridisation}}$	ation are
KE = stopping potential = 0.5 eV E = W ₀ + K.E. 4.96 = W + 0.5 W ₀ = 4.46 \approx 4.5 eV 21. In graphite and diamond, the percentage of p-characters of the hybrid orbitals in hybridizar respectively : (1) 33 and 25 (2) 67 and 75 Sol. Graphite Diamond sp ² hybridisation sp ³ hybridisation	ition are
$E = W_0 + K.E.$ $4.96 = W + 0.5$ $W_0 = 4.46 \approx 4.5 \text{ eV}$ 21. In graphite and diamond, the percentage of p-characters of the hybrid orbitals in hybridization respectively : (1) 33 and 25 (2) 67 and 75 (3) 50 and 75 (4) 33 and 75 Ans. (2) Sol. Graphite P Diamond sp^2 hybridisation sp^3 hybridisation	ition are
$4.96 = W + 0.5$ $W_0 = 4.46 \approx 4.5 \text{ eV}$ 21. In graphite and diamond, the percentage of p-characters of the hybrid orbitals in hybridization (1) 33 and 25 (2) 67 and 75 (3) 50 and 75 (4) 33 and 75 Ans. (2) Sol. Graphite Diamond sp^2 hybridisation sp^3 hybridisation	ation are
$W_{0} = 4.46 \approx 4.5 \text{ eV}$ 21. In graphite and diamond, the percentage of p-characters of the hybrid orbitals in hybridization respectively: (1) 33 and 25 (2) 67 and 75 (3) 50 and 75 (4) 33 and 75 (2) Sol. $Graphite \qquad Diamond \\ sp^{2} hybridisation \qquad sp^{3} hybridisation \qquad except the second s$	ation are
21. In graphite and diamond, the percentage of p-characters of the hybrid orbitals in hybridization (1) 33 and 25 (2) 67 and 75 (3) 50 and 75 (4) 33 and 75 Ans. (2) Sol. Graphite Diamond sp ² hybridisation sp ³ hybridisation	ation are
respectively : (1) 33 and 25 (2) 67 and 75 (3) 50 and 75 (4) 33 and 75 Ans. (2) Sol. Graphite Diamond sp ² hybridisation sp ³ hybridisation	ation are
respectively : (1) 33 and 25 (2) 67 and 75 (3) 50 and 75 (4) 33 and 75 Ans. (2) Sol. Graphite Diamond sp ² hybridisation sp ³ hybridisation	
(1) 33 and 25 (2) 67 and 75 (3) 50 and 75 (4) 33 and 75 Ans. (2) Sol. Graphite Diamond sp ² hybridisation sp ³ hybridisation	
Ans. (2) Sol. Graphite Diamond sp ² hybridisation sp ³ hybridisation	
Sol. Graphite Diamond sp ² hybridisation sp ³ hybridisation	
Graphite Diamond sp ² hybridisation sp ³ hybridisation	
sp ² hybridisation sp ³ hybridisation	
$\% P = \frac{1}{2} \times 100 = 67 \%$ $\% P = \frac{1}{2} \times 100 = 75 \%$	
3 4	
22. When an electric current is passed through acidified water, 112 mL of hydrogen gas at N.	T.P was
collected at the cathode in 965 seconds. The current passed, in ampere, is :	
(1) 2.0 (2) 0.1 (3) 0.5 (4) 1.0	
Ans. (4)	
Sol. Cathode	
$2e^- + 2H_2O \longrightarrow H_2 + 2OH^-$ (v.f.) _{H₂} = 2	
-	
$mole = \frac{i \times t}{v.f. \times 96500}$	
$\frac{112}{i \times 965}$	
$\frac{112}{22400} = \frac{1\times 300}{2\times 96500}$	
1 i	
$\frac{1}{2} = \frac{i}{2}$	
i = 1 amp	

Resonance Eduventures Limited

		O at 56677 contact@			Page 21
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

Resonance[®] | PAPER-1 (B.E. / B.TECH.) JEE (MAIN) | ONLINE | 15-04-2018 The minimum volume of water required to dissolve 0.1 g lead(II) chloride to get a saturated solution (K_{so} 23. of PbCl₂ = 3.2×10^{-8} ; atomic mass of Pb = 207 u) is : (1) 1.798 L (2) 0.36 L (3) 17.95 L (4) 0.18 L (4) Ans. $(K_{sp})_{PbCl_2} = 32 \times 10^{-9}$ Sol. $PbCl_2 \implies Pb^{2+} + 2Cl^{-}$ 2s s $K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$ $K_{sp} = 4s^3 = 32 \times 10^{-9}$ $s^3 = 8 \times 10^{-9}$ $s = 2 \times 10^{-3} M$ $\frac{W}{M.W.} \times \frac{1}{V_1} = 2 \times 10^{-3}$ $\frac{0.1}{278} \times \frac{1}{V_1} = 2 \times 10^{-3}$ $V_{L} = \frac{0.1 \times 1000}{278 \times 2} = 0.18 L$

- 24. In which of the following reactions, an increase in the volume of the container will favour the formation of products ?
 - (1) $4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(\ell)$
 - (2) $2NO_2$ (g) \rightleftharpoons 2NO (g) + O_2 (g)
 - (3) $3O_2(g) \rightleftharpoons 2O_3(g)$
 - (4) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$
- **Ans.** (2)
- **Sol.** Volume $\uparrow P \downarrow$ reaction proceed in which direction where number of gases mole increases.

 $2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$ $\Delta n_g = (2 + 1) - 2 = 1$

Resonance Eduventures Limited

				www.resonance.ac.in	Page 22
Toll Free : 1800 258 5555	08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	www.youtube.com/resowatch	🕒 blog.resonance.ac.in

Resonance[®] | PAPER-1 (B.E. / B.TECH.) JEE (MAIN) | ONLINE | 15-04-2018


The decreasing order of bond angles in BF₃, NH₃, PF₃ and I_3^- is : 25. (1) $I_3^- > BF_3 > NH_3 > PF_3$ (2) $BF_3 > I_3^- > PF_3 > NH_3$ (3) $BF_3 > NH_3 > PF_3 > I_3^-$ (4) $I_3^- > NH_3 > PF_3 > BF_3$ Ans. (1)Bond angle = 120° Sol. Bond angle = 107° (1 lone pair) When central atom size \uparrow Bond angle \downarrow $NH_3 > PF_3$ SD) I_3^- Bond angle 180° sp³d $PF_3 < NH_3 < BF_3 < I_3$ **Bond Angle**

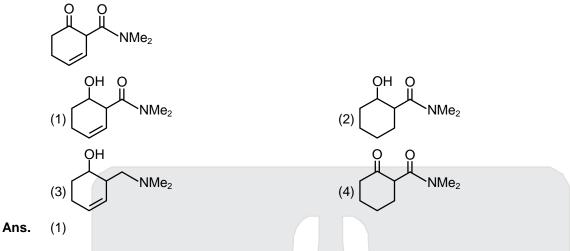
26. Which of the following arrangements shows the schematic alignment of magnetic moments of antiferromagnetic substance ?

Ans. (

- **Sol.** Substances which are expected to possess para-magnetism or ferro-magnetism on the basis of unpaired electrons but actually they possess zero net magnetic moment are called anti ferromagnetic substance.
- 27. The reagent(s) required for the following conversion are :

- (1) (i) NaBH₄ (ii) Raney Ni/H₂ (iii) H₃O⁺
- (3) (i) B_2H_6 (ii) DIBAL-H (iii) H_3O^+

(2) (i) LiAlH₄ (ii) H₃O⁺
(4) (i) B₂H₆ (ii) SnCl₂/HCl (iii) H₃O⁺


Resonance Eduventures Limited

				www.resonance.ac.in	Page 23
Toll Free : 1800 258 5555	08003 444 888	facebook.com/ResonanceEdu	У twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

Resonance[®] | PAPER-1 (B.E. / B.TECH.) JEE (MAIN) | ONLINE | 15-04-2018

28.

The main reduction product of the following compound with NaBH₄ in methanol is :

29. Xenon hexafluoride on partial hydrolysis produces compounds 'X' and 'Y'. Compounds 'X' and 'Y' and the oxidation state of Xe are respectively :

(1) $XeOF_4$ (+6) and XeO_3 (+6)

(3) $XeOF_4$ (+6) and XeO_2F_2 (+6)

Ans. (3)

Sol.
$$XeF_6 + H_2O \xrightarrow{Partial hydrolysis} H_2O \xrightarrow{+6} XeO_2F_2$$

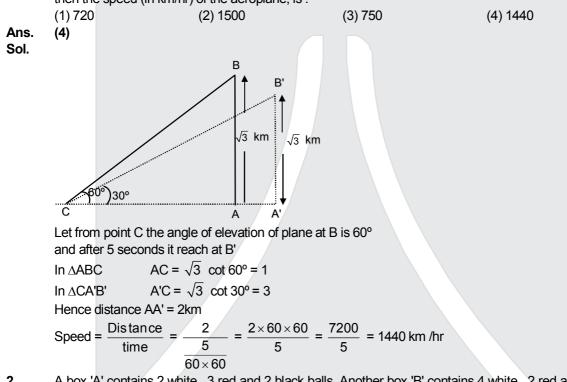
(2) XeOF₂ (+4) and XeO₃ (+6)
(4) XeO₂F₂ (+6) and XeO₂ (+4)

30. A white sodium salt dissolves readily in water to give a solution which is neutral to litmus. When silver nitrate solution is added to the aforementioned solution, a white precipitate is obtained which does not dissolve in dilute nitric acid. The anion is :

(1)
$$CO_3^{2-}$$
 (2) SO_4^{2-} (3) S^{2-} (4) CI^-
Ans. (4)
Sol. $CI^- + Na^+ \longrightarrow \underset{(Neutral)}{NaCl} (SASB salt) \xrightarrow{AgNO_3} AgCl (white ppt) (not dissolve in dilute HNO_3)$

Resonance Eduventures Limited

		•		www.resonance.ac.in	Page 24
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in


MATHEMATICS PART- C

Straight Objective Type (सीधे वस्तुनिष्ठ प्रकार)

This section contains **30 multiple choice questions.** Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which **Only One** is correct.

इस खण्ड में 30 बहु-विकल्पी प्रश्न हैं। प्रत्येक प्रश्न के 4 विकल्प (1), (2), (3) तथा (4) हैं, जिनमें से सिर्फ एक सही है।

1. An aeroplane flying at a constant speed, parallel to the horizontal ground, $\sqrt{3}$ km above it, is observed at an elevation of 60° from a point on the ground. If, after five seconds, its elevation from the same point, is 30°, then the speed (in km/hr) of the aeroplane, is :

2. A box 'A' contains 2 white , 3 red and 2 black balls. Another box 'B' contains 4 white , 2 red and 3 black balls. If two balls are drawn at random, without replacement, from a randomly, selected box and one ball turns out to be white while the other ball turns out to be red, then the probability that both balls are drawn from box 'B' is :

(1)
$$\frac{7}{8}$$
 (2) $\frac{9}{16}$ (3) $\frac{7}{16}$ (4) $\frac{9}{32}$

Sol. Probability that box A is selected $P(A) = \frac{1}{2}$

Probability that box B is selected P(B) = $\frac{1}{2}$

E be event that one ball is white while the other is red $P(E) = P(A) \cdot P(E/A) + P(B) P(E/B)$

$$= \frac{1}{2} \left[\frac{2.3}{{}^7C_2} + \frac{4.2}{{}^9C_2} \right] = \frac{1}{2} \left[\frac{6}{21} + \frac{8}{36} \right] = \frac{1}{2} \left[\frac{2}{7} + \frac{2}{9} \right] = \frac{16}{63}$$
$$P(B/E) = \frac{P(B)P(E/B)}{P(E)} = \frac{1/9}{16/63} = \frac{7}{16}$$

Resonance Eduventures Limited

				www.resonance.ac.in	Page 25
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	🟏 twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

3. If a right circular cone, having maximum volume, is inscribed in a sphere of radius 3 cm, then the curved surface area (in cm²) of this cone is :

(1)
$$8\sqrt{2\pi}$$
 (2) $6\sqrt{2\pi}$ (3) $8\sqrt{3\pi}$ (4) $6\sqrt{3\pi}$

Ans. Sol.

4.

Ans.

Sol.

(3)

Ν 3 C m B $V = \frac{1}{3}\pi r^2 h$ where r is radius and h is height of coin $\Rightarrow V = \frac{1}{2} \pi (3 \sin 2\theta)^2 (3 + 3 \cos 2\theta)$ = $72\pi \sin^2\theta \cos^4\theta$ $\frac{dv}{d\theta} = 72\pi \left[2\sin\theta\cos^5\theta - 4\sin^3\theta\cos^3\theta\right] = 0 \Rightarrow \tan^2\theta = \frac{1}{2}$ V_{max} if $\tan \theta = \frac{1}{\sqrt{2}}$ Hence curved surface area S = $\pi r \ell$ $= \pi r \sqrt{(3 + 3\cos 2\theta)^2 + (3\sin 2\theta)^2}$ $=\pi$ (3sin2 θ) $\sqrt{36 \sin^2 \theta} = 18\pi$ (2sin $\theta \cos^2 \theta$) = 36 $\pi \cdot \frac{1}{\sqrt{3}} \cdot \frac{2}{3} = \frac{24\pi}{3} = 8\sqrt{3}\pi$ If β is one of the angles between the normals to the ellipse $x^2 + 3y^2 = 9$ at the points ($3\cos\theta$, $\sqrt{3}$ sin θ) and $(-3 \sin\theta, \sqrt{3} \cos\theta); \theta \in \left(0, \frac{\pi}{2}\right)$; then $\frac{2 \cot\beta}{\sin 2\theta}$ is equal to : (2) $\frac{\sqrt{3}}{4}$ (1) $\frac{1}{\sqrt{3}}$ (3) $\frac{2}{\sqrt{3}}$ $(4) \sqrt{2}$ (3) $\frac{x^2}{2} + \frac{y^2}{2} = 1$ Normal at $(3\cos\theta, \sqrt{3}\sin\theta)$ is $3\sec\theta \cdot x - \sqrt{3} \csc\theta y = 6$(i) normal at (-3sin θ , $\sqrt{3}$ cos θ) is $-3\cos \theta x - \sqrt{3} \sec \theta y = 6$(ii) Angle between normal is β $\Rightarrow \tan\beta = \left| \frac{\sqrt{3} \tan \theta + \sqrt{3} \cot \theta}{1 - 3} \right| = \left| -\frac{\sqrt{3}}{2 \sin \theta \cos \theta} \right| \Rightarrow \tan\beta = \frac{\sqrt{3}}{\sin 2\theta} \Rightarrow \frac{2 \cot \beta}{\sin 2\theta} = \frac{2}{\sqrt{3}}$

Resonance Eduventures Limited

				ww.resonance.ac.in	Page 26
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	🟏 twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

5. If
$$\left(t\frac{x-4}{x+2}\right) = 2x + 1, (x \in R - \{1, -2\}), \text{ then } \int f(x)dx \text{ is equal to : (where C is a constant of integration)}$$

(1) 12 log_k |1 - x| - 3x + C
(2) - 12 log_k |1 - x| - 3x + C
(3) 12 log_k |1 - x| + 3x + C
(4) - 12 log_k |1 - x| + 3x + C
(5) $\left(t\frac{x-4}{x+2}\right) = 2x + 1$
 $\Rightarrow f(x) = 2\left\{1-3\left(\frac{x+1}{x-1}\right)\right\} + 1$
 $= 3 - \frac{6x+6}{x-1} = \frac{-3x-9}{x-1}$
 $\Rightarrow f(x) = \frac{3(x+3)}{(1-x)}$
 $\Rightarrow \int f(x)dx = 3\int \left(\frac{x+3}{1-x}\right)dx = 3\int \frac{4-(1-x)}{1-x} dx = 3\left[\int \frac{4}{1-x} dx - \int dx\right]$
 $= 3\left(-4n(1-x-x) + C = -12n(1-x) - 3x + C\right)$
6. If $\lambda \in \mathbb{R}$ is such that the sum of the cubes of the roots of the equation $x^2 + (2-\lambda)x + (10-\lambda) = 0$ is minimum, then the magnitude of the difference of the roots of the equation is :
(1) $4\sqrt{2}$
(2) 20
(3) $2\sqrt{5}$
(4) $2\sqrt{7}$
Ans. (3)
Sol. $x^2 + (2-\lambda)x + (10-\lambda) = 0$
Let roots are $\alpha \in \beta$
 $\Rightarrow \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 3\alpha\beta(\alpha + \beta)$
 $= (\lambda - 2)^2 - 3(10-\lambda)(\lambda - 2)$
 $= \lambda^3 - 6\lambda^2 + 12\lambda - 8 - 3(10(\lambda - \lambda^2 - 20 + 2\lambda))$
 $= \lambda^3 - 6\lambda^2 + 12\lambda - 8 - 3(10(\lambda - \lambda^2 - 20 + 2\lambda))$
 $= \lambda^3 - 6\lambda^2 + 12\lambda - 8 - 3(10(\lambda - \lambda^2 - 20 + 2\lambda))$
 $= \lambda^2 - 2\lambda - 8 = 0$
 $= (\lambda - 4)(\lambda + 2) = 0$
 $= \lambda - 2, 4$
 $\frac{d^2z}{d\lambda^2}$ $(\lambda = 4) > 0 \Rightarrow \alpha^3 + \beta^3$ max if $\lambda = -2$
 $\frac{d^2z}{d\lambda^2}$ $(\lambda = 4) > 0 \Rightarrow \alpha^3 + \beta^3$ min. if $\lambda = 4$
 \Rightarrow Equation is $x^2 - 2x + 6 = 0$
 $1 + \sqrt{5}$ i

 $|\alpha - \beta| = 2\sqrt{5}$

Resonance Eduventures Limited

			-	www.resonance.ac.in	Page 27
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEd	u 🛗 www.youtube.com/resowatch	blog.resonance.ac.in

7. Two parabolas with a common vertex and with axes along x-axis and y-axis, respectively, intersect each other in the first quadrant. If the length of the latus rectum of each parabola is 3, then the equation of the common tangent to the two parabolas is : $(2) 8 (2x + y) + 3 = 0 \qquad (3) x + 2y + 3 = 0 \qquad (4) 4(x + y) + 3 = 0$ (1) 3(x + y) + 4 = 0Ans. (4) Equation two parabola are $y^2 = 3x$ and $x^2 = 3y$ Sol. Let equation of tangent to $y^2 = 3x$ is $y = mx + \frac{3}{4m}$ is also tangent to $x^2 = 3y$ \Rightarrow x² = 3mx + $\frac{9}{4m}$ \Rightarrow 4mx² – 12m²x – 9 = 0 have equal roots \Rightarrow D = 0 \Rightarrow 144 m⁴ = 4 (4m) (-9) \Rightarrow m⁴ + m = 0 \Rightarrow m = -1 Hence common tangent is $y = -x - \frac{3}{4}$ 4(x + y) + 3 = 0COSX X 1 If $f(x) = 2\sin x + x^2 + 2x^2$, then 8. tanx x $\lim_{x\to 0} \frac{f'(x)}{x}$ (1) does not exist (2) exists and is equal to -2(3) exists and is equal to 0 (4) exists and is equal to 2. Ans. (2) cosx $f(x) = \begin{vmatrix} 2\sin x & x^2 & 2x \end{vmatrix}$ Sol. tanx x 1 $= -x^2 \cos x + \tan x \cdot x^2$ $= x^2 (tanx - cosx)$ $\Rightarrow \lim_{x \to 0} \frac{f'(x)}{x} = \lim_{x \to 0} \frac{2x(\tan x - \cos x) + x^2(\sec^2 x + \sin x)}{x}$ $= \lim_{x \to 0} 2 (\tan x - \cos x) + x(\sec^2 x + \sin x)$ = - 2

Resonance Eduventures Limited

To Know	more: sms RES	O at 56677 contact@	presonance.ac.in	www.resonance.ac.in	Page 28
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	u 🛗 www.youtube.com/resowatch	blog.resonance.ac.in

9. The value of the integral
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{4} x \left(1 + \log\left(\frac{2 + \sin x}{2 - \sin x}\right)\right) dx$$
 is:
(1) $\frac{3}{4}$ (2) $\frac{3}{8}\pi$ (3) 0 (4) $\frac{3}{16}\pi$
Ans. (2)
Sol. $1 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{4} x \left(1 + \log\left(\frac{2 + \sin x}{2 - \sin x}\right)\right) dx$ (i)
Use proeffies $\int_{0}^{1} f(x) dx = \int_{0}^{1} f(a + b - x) dx$
 $= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{4} x \left(1 + \log\left(\frac{2 - \sin x}{2 + \sin x}\right)\right) dx$ (ii)
 $by (0 + (0)$
 $\Rightarrow 21 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \sin^{4} x dx$
 $\Rightarrow 1 = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{4} x dx = \frac{\pi}{2}$
 $= x, \frac{3.1}{4.2}, \frac{\pi}{2} = \frac{3\pi}{8}$
10. n-digit number are formed using only three digit 2,5 and 7. The smallest value of n for which 900 such distinct numbers can be formed, is:
(1) 9 (2) 7 (3) 8 (4) 6
Ans. 2
Sol. $1 - f(3)$ thus repetition is = 3^{1} \frac{3\pi}{8}
11. If the tangents drawn to the hyperbola $4y^{2} = x^{2} + 1$ intersect the co-ordinates axes at the distinct points A and B, then the locus of the mid point of AB is:
(1) $4x^{2} - y^{2} + 16x^{2}y^{2} = 0$
(2) $x^{2} - 4y^{2} + 16x^{2}y^{2} = 0$
(3) $x^{2} - 4y^{2} + 16x^{2}y^{2} = 0$
(4) $4x^{2} - y^{2} + 16x^{2}y^{2} = 0$
(5) Let tangent drawn at point (x, y) to the hyperbola $4y^{2} = x^{2} + 1$ is: $4y$, $= xx$, $+ 1$
This tangent intersect co-ordinate axes at A and B respectively then $A\left(-\frac{1}{x_{1}}, 0\right)$ and $B\left(0, \frac{1}{4y_{1}}\right)$
Let mid point is $M(h_{k})$ then of AB
 $2h = -\frac{1}{x_{1}} \Rightarrow y_{1} = \frac{1}{8k}$ (i)

Resonance Eduventures Limited

			-	www.resonance.ac.in	Page 29
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	🟏 twitter.com/ResonanceEdu	腸 www.youtube.com/resowatch	blog.resonance.ac.in

Since point $P(x_1, y_1)$ lies on the hyperbola so $4y_1^2 = x_1^2 + 1$ from (i) & (ii) $4\left(\frac{1}{8k}\right)^2 = \left(-\frac{1}{2h}\right)^2 + 1 \quad \Rightarrow \qquad \frac{1}{16k^2} = \frac{1}{4h^2} + 1$ $4h^{2} = 16k^{2} (1 + 4h^{2})$ $x^{2} = 4y^{2} + 16x^{2}y^{2}$ $x^{2} - 4y^{2} - 16x^{2}y^{2} = 0$ $x^{2} - 4y^{2} - 16x^{2}y^{2} = 0$ locus of N If tan A and tanB are the roots of the quadratic equation, $3x^2 - 10x - 25 = 0$, then the value of $3 \sin^2 (A + B) - 10x - 25 = 0$ 12. 10 sin (A + B). cos (A + B) – $25 cos^2$ (A + B) is : (1) – 25 (3) - 10(2) 10(4)25Ans. (1) Since tanA and tanB are roots of the equation $3x^2 - 10x - 25 = 0$ Sol. so tanA + tanB = $\frac{10}{3}$ $\tan B.\tan B = -\frac{25}{3}$ $\therefore \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} = \frac{10/3}{1 + \frac{25}{2}} = \frac{10}{28} = \frac{5}{14}$ = so sin (A + B) = $\frac{5}{\sqrt{221}}$ and cos (A + B) = $\frac{14}{\sqrt{227}}$ $\therefore 3\sin^{2}(A + B) - 10\sin(A + B)\cos(A + B) - 25\cos^{2}(A + B)$ = 3 × $\frac{25}{221} - \frac{10 \times 5 \times 14}{221} - 25 \times \frac{14^{2}}{221} = \frac{25}{221}(3 - 28 - 196) = -25$ Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} + 2y = f(x)$, where $f(x) = \begin{cases} 1 & , & x \in [0,1] \\ 0 & , & \text{otherwise} \end{cases}$ 13. If y(0) = 0, then y $\left(\frac{3}{2}\right)$ is : (1) $\frac{e^2 - 1}{e^3}$ (2) $\frac{1}{2e}$ (3) $\frac{e^2 + 1}{2e^4}$ (4) $\frac{e^2 - 1}{2e^3}$ Ans. $\frac{dy}{dx}$ + 2y = f(x) is a linear differential equation Sol. $If = e^{\int 2dx} = e^{2x}$ solution of the above equation is $y.e^{2x} = \int f(x).e^{2x}dx + C$ $y(x) = e^{-2x} \int_0^x f(x) e^{2x} dx + c e^{-2x}$ $y(0) = 0 \Rightarrow C = 0$ \Rightarrow y(x) = $e^{-2x} \int_{x}^{x} f(x)e^{2x} dx$ $y(3/2) = e^{-3} \left[\int_0^1 e^{2x} dx + \int_1^{3/2} 0 dx \right] = \frac{e^{-3}}{2} \left[e^2 - 1 \right] = \frac{e^2 - 1}{2e^3}$

Resonance Eduventures Limited

				www.resonance.ac.in	Page 30
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	🟏 twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

14. If b is the first term of an infinite G.P. whose sum is five, then b lies in the interval :

	(1) [10, ∞)	(2) (–∞, – 10]	(3) (–10,0)	(4) (0, 10)
--	--------------	----------------	-------------	-------------

- Ans. (4)
- Sol. If b is the first term and r is the common ratio of an infinite G.P. then sum is 5

$$5 = \frac{b}{1-r}$$

$$1 - r = \frac{b}{5}$$

$$r = 1 - \frac{b}{5}$$

$$r = \frac{5-b}{5}$$

$$\therefore -1 < r < 1$$

$$\therefore -1 < \frac{5-b}{5} < 1$$

$$-5 < 5 - b < 5$$

$$-5 < 5 - b < 5$$

$$-10 < -b < 0$$

$$0 < b < 10$$

$$b \in (0, 10)$$

15. Consider the following two binary relations on the set A = {a, b, c} :

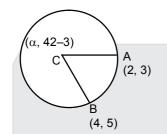
 $R_1 = \{(c,a), (b,b), (a,c), (c,c), (b,c), (a,a)\}$ and $R_2 = \{(a,b), (b,a), (c,c), (c,a), (a,a), (b,b), (a,c)\}$. Then :

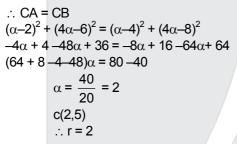
(1) R₂ is symmetric but it is not transitive

- (2) both R_1 and R_2 are not symmetric
- (3) both R_1 and R_2 are transitive.
- (4) R_1 is not symmetric but it is transitive

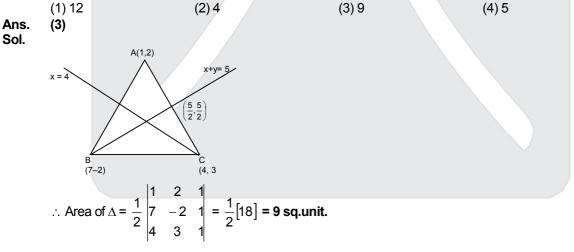
Ans. (1)

 $\begin{array}{lll} \textbf{Sol.} & R_1 \in (b,\,c) \text{ but } R_1 \notin (c,b) \\ & \text{Example } R_1 \text{ is not symmetric} \\ & \text{ in } R_1 \text{ ; } (b,c) \in R_1 \text{ and } (c,a) \in R_1 \text{ but } (b,a) \notin R_1 \\ & \text{ So } R_1 \text{ is not transitive} \\ & R_2 \text{ is symmetric} \\ & \text{ is } R_2 \text{ ; } (b,a) \in R_2 \text{ and } (a,c) \in R_2 \text{ but } (b,c) \notin R_2 \\ & \text{ So } R_2 \text{ is not transitive} \end{array}$


Resonance Eduventures Limited


				www.resonance.ac.in	Page 31
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	🟏 twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

16. A circle passes through the points (2,3) and (4,5). If its centre lies on the line, y - 4x + 3 = 0, then its radius is equal to :


(4)2

- (1) $\sqrt{5}$ (2) $\sqrt{2}$ (3) 1
- Ans. (4)
- Sol. Let centre of circle is $c(\alpha,\beta)$ it lies is line y - 4x + 3 = 0 B = $4\alpha - 3$ $\therefore c(\alpha, 4\alpha - 3)$

17. In a triangle ABC, coordinates of A are (1,2) and the equations of the medians through B and C are respectively, x + y = 5 and x = 4. Then area of $\triangle ABC$ (in sq. units) is :

18. The set of all $\alpha \in \mathbb{R}$, for which $w = \frac{1 + (1 - 8\alpha)z}{1 - z}$ is a purely imaginary number, for all $z \in \mathbb{C}$ satisfying |z| = 1 and $\operatorname{Re} z \neq 1$, is : (1) {0} (2) $\left\{0, \frac{1}{4}, -\frac{1}{4}\right\}$ (3) equal to \mathbb{R} (4) an empty set

Resonance Eduventures Limited

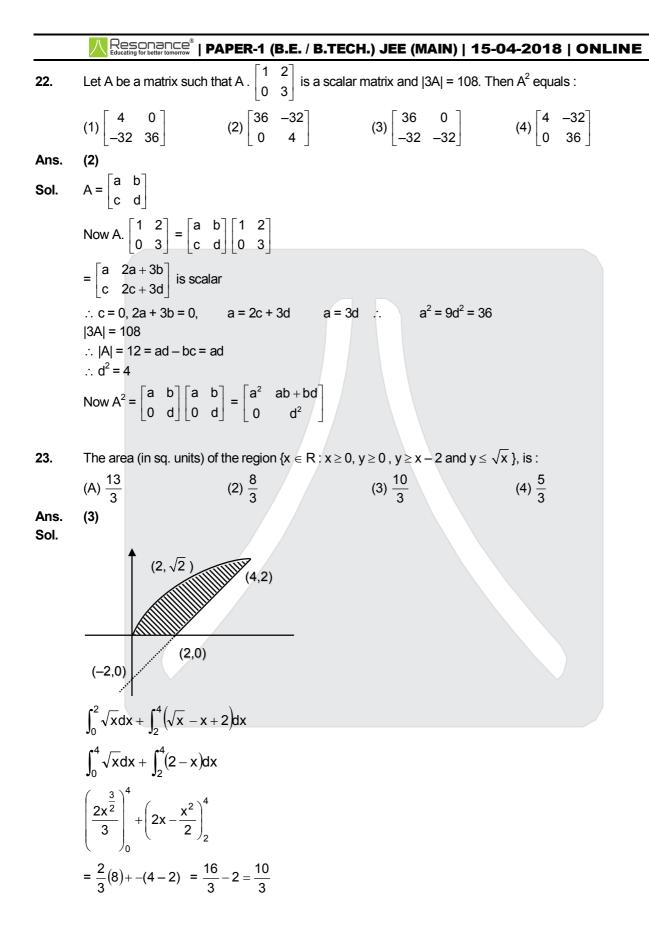
				www.resonance.ac.in	
Toll Free : 1800 258 5555	O8003 444 888 O8003 444 O8003 O800 O8003 O800 O800	facebook.com/ResonanceEdu	🔰 twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

Ans. (1)
Sol.
$$\frac{1+(1-8\alpha)z}{1-z} + \frac{1+(1-8\alpha)\overline{z}}{1-\overline{z}} = 0$$

$$\frac{1-\overline{z}}{1-\overline{z}} + \frac{1+(1-8\alpha)\overline{z}}{1-\overline{z}} = 0$$

$$\frac{1-\overline{z}}{2-(z+\overline{z})+(1-8\alpha)(z+\overline{z})-2+16\alpha=0}$$

$$\Rightarrow \alpha(z+\overline{z}) = 16\alpha$$


$$\Rightarrow (z+\overline{z}) = 16\alpha$$

Let plane is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ Sol.

> it passes through (3,2,1) $\therefore \frac{3}{a} + \frac{2}{b} + \frac{1}{c} = 1$ Now A (a,0,0) , B (0, b, 0) , C (0,0,c) : Locus of point of intersection of planes x = a y = b, z = c is $\frac{3}{x} + \frac{2}{y} + \frac{1}{z} = 1$

Resonance Eduventures Limited

				www.resonance.ac.in	Page 33
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	www.youtube.com/resowatch	blog.resonance.ac.in

Resonance Eduventures Limited

				www.resonance.ac.in	• • •
Toll Free : 1800 258 5555	S 08003 444 888 S	facebook.com/ResonanceEdu	🔰 twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

24. If
$$x^2 + y^2 + \sin y = 4$$
, then the value of $\frac{d^2y}{dx^2}$ at the point (-2, 0) is :
(1) - 34 (2) 4 (3) - 2 (4) - 32
Ans. (1)
Sol. $x^2 + y^2 + \sin y = 4 \Rightarrow 2x + (2y + \cos y) \frac{dy}{dx} = 0$
 $\frac{dy}{dx} = \frac{-2x}{2y + \cos y}$ at (-2, 0) $\Rightarrow \frac{dy}{dx} = \frac{4}{1} = 4$
and $(2y + \cos y) \frac{d^2y}{dx^2} + (2 - \sin y) (\frac{dy}{dx})^2 + 2 = 0$
 $(2y + \cos y) \frac{d^2y}{dx^2} + (2 - \sin y) (\frac{dy}{dx})^2 + 2 = 0$
 $\Rightarrow \frac{d^2y}{dx^2} = -34$

.

_ _ _ _ _ _ _ _ _

0 and 4y 5x + 8y + 2z + 14 = 0, is:

(1)
$$\cos^{-1}\left(\sqrt{\frac{3}{17}}\right)$$
 (2) $\cos^{-1}\left(\frac{3}{\sqrt{17}}\right)$ (3) $\sin^{-1}\left(\frac{3}{\sqrt{17}}\right)$ (4) $\sin^{-1}\left(\sqrt{\frac{3}{17}}\right)$
(4)
|i j k|

Ans. Sol.

3 4 1 582

> $i(0) - j(6-5) + k(24-20) = -\hat{j} + 4\hat{k}$ Angle = $\frac{\pi}{2} - \cos^{-1}\left(\frac{-1+4}{\sqrt{3}\sqrt{17}}\right) = \frac{\pi}{2} - \cos^{-1}\left(\frac{\sqrt{3}}{17}\right) = \sin^{-1}\sqrt{\frac{3}{17}}$

Let $S = \{\lambda, \mu\} \in R \times R$: $f(t) = (|\lambda|e^{|t|} - \mu)$. sin (2|t|), $t \in R$, is a differentiable function}. Then S is a subset of : 26. (1) (–∞, 0) × R (2) R × [0, ∞) (3) [0, ∞) × R (4) R × (-∞,0) (2)

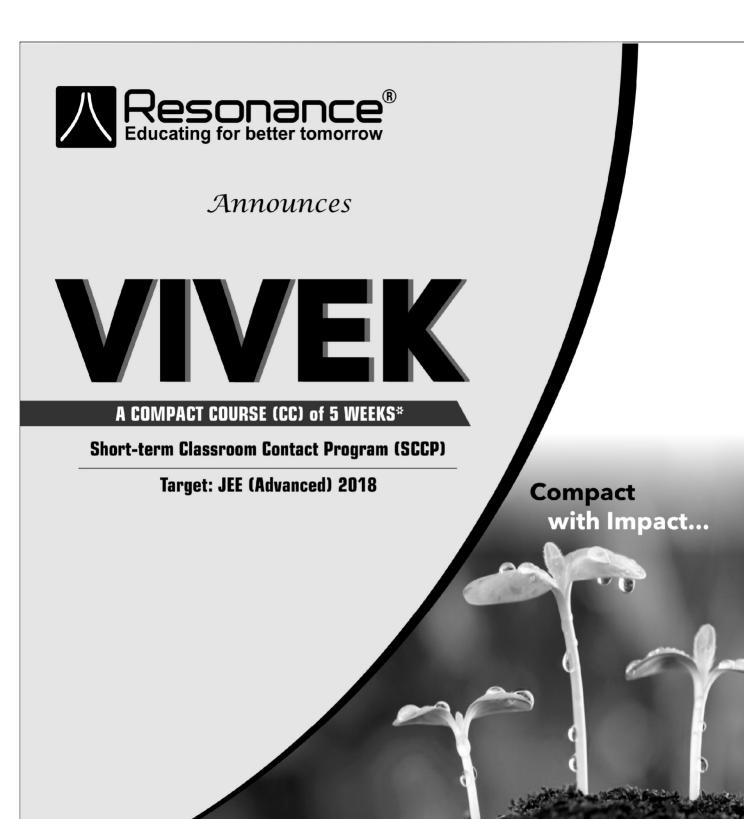
Ans. Sc

bl. Let
$$s = \{\lambda, \mu\} \in \mathbb{R} \times \mathbb{R}\}$$

$$f(t) = \{|\lambda| e^{|t|} - \mu\} \sin 2|t|$$

$$RHD = \lim_{h \to 0} \frac{f(0+h) - 0}{h} = \lim_{h \to 0} (\lambda \mid e^{h} - \mu) \frac{\sin^{2} h}{h} = 2(\lambda \mid e^{h} - \mu) = 0$$
$$LHD = \lim_{h \to 0} \frac{f(0-h) - 0}{-h} = \lim_{h \to 0} (\lambda^{e+h} - \mu) \frac{\sin^{2} h}{-h} = -2(\lambda \mid e^{h} - \mu)$$
$$|\lambda|e^{h} = \mu$$
$$|\lambda| = \mu$$
$$\Rightarrow \mu \ge 0 \& \lambda \in R$$

 $0^{+} = 0$


Resonance Eduventures Limited

			- ,	ww.resonance.ac.in	• • •
Toll Free : 1800 258 5555	<u>)</u> 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

Resonance[®] | PAPER-1 (B.E. / B.TECH.) JEE (MAIN) | 15-04-2018 | ONLINE 27. Let S be the set of all real values of k for which the system of linear equations x + y + z = 22x + y - 2 = 33x + 2y + kz = 4Has a unique solution. Then S is : (1) equal to $R - \{0\}$ (3) equal to R (4) equal to {0} (2) an empty set Ans. (4) $\begin{vmatrix} 2 & 1 & -1 \end{vmatrix} \neq 0$ Sol. $\Delta \neq 0$ for $1(k+2) - 1(2k+3) + 1(4-3) = 0 \implies k+2-2k-3+1=0 \implies -k=0 \implies$ * + $\left[\frac{2}{\sqrt{5x^3+1}+\sqrt{5x^3-1}}\right]$ If n is the degree of the polynomial, 28. and m is the coefficient of x^n in it, then the ordered pair (n,m) is equal to : $(1)(8,5(10)^4)$ $(2)(12, 8(10)^4)$ $(3)(12,(20)^4)$ $(4)(24,(10)^8)$ Ans. (3) $\left\lceil \frac{2\left(\sqrt{5x^3 + 1} + \sqrt{5x^3 - 1}\right)}{2} \right|^3 + \left| \frac{2\left(\sqrt{5x^3 + 1} - \sqrt{5x^3 - 1}\right)}{2} \right|^3$ Sol. $=2\bigg[\ ^{8}C_{0}\left(\sqrt{5x^{^{3}}+1}\right)^{8}+\ ^{8}C_{2}\left(\sqrt{5x^{^{3}}+1}\right)^{6}\left(5x^{^{3}}-1\right)+\ ^{8}C_{4}\left(\sqrt{5x^{^{3}}+1}\right)^{4}\left(5x^{^{3}}-1\right)^{2}+\ ^{8}C_{6}\left(\sqrt{5x^{^{3}}+1}\right)^{2}\left(5x^{^{3}}-1\right)^{3}+\ ^{8}C_{8}\left(5x^{^{3}}-1\right)^{4}\bigg]$ $=2\Big[\left(5x^{3}-1\right)^{4}+28\left(5x^{3}+1\right)^{3}\left(5x^{3}-1\right)+70\left(5x^{3}+1\right)^{2}\left(5x^{3}-1\right)^{2}+28\left(5x^{3}+1\right)\left(5x^{3}-1\right)^{3}+\left(5x^{3}-1\right)^{4}\Big]$ h = 12 & m = $2(5^4 + 140.5^3 + 70.5^4 + 140.5^3 + 5^4)$ = $160000 = (20)^4$ 29. The mean of a set of 30 observations is 75. If each observations is multiplied by a non-zero number λ and then each of them is decreased by 25, their mean remains the same. Then λ is equal to : (3) $\frac{10}{3}$ $(4)\frac{2}{3}$ (2) $\frac{1}{3}$ (1) 3 (1) Ans. Sol. $x_1 + x_2 + \dots + x_{30} = 75 \times 30$ Now given $\lambda(x_1 + x_2 + x_3 + \dots + x_{30}) - 25 \times 30 = 75 \times 30$ λ (75 × 30) = 100 × 30 $\lambda = \frac{4}{3}$ If $(p \land \neg q) \land (p \land r) \rightarrow \neg p \lor q$ is false, then the truth values of p, q and r are, respectively : 30. (1) T, T, T(2) F,T,F (3) T,F,T (4) F,F,F Ans. (3) $(p \land \neg q) \land (p \land \neg r) \rightarrow \neg p \lor q$ Sol. $(T \land F) \land (T \land T) \rightarrow (F \lor T)$ (1) $\equiv (F \land T) \rightarrow T$ $\equiv F \rightarrow T \equiv T$ $(F \land F) \land (F \land F) \rightarrow T \lor T$ (2) $F \rightarrow T \equiv T$ $(T \land T) \land (T \land T) \rightarrow F \lor F$ (3) $T \rightarrow F \equiv F$ (4) $(F \land T) \land (F \land F) \rightarrow T \lor F$ $F \land F \rightarrow T$ $F \rightarrow T \equiv T$

Resonance Eduventures Limited

				ww.resonance.ac.in	• • •
Toll Free : 1800 258 5555	🕥 08003 444 888	facebook.com/ResonanceEdu	😏 twitter.com/ResonanceEdu	🛗 www.youtube.com/resowatch	blog.resonance.ac.in

COURSE MODULES						
Course Module	Target	Duration	Commencement Date/(Day)	End Date/(Day)		
Module-II	JEE (Advanced) - 2018	05 Weeks*	16.04.2018 (Monday)	13.05.2018 (Sunday)		
				*Approximate Duration		

Toll Free: 1800 258 5555 | Visit us: www.resonance.ac.in 🛛 🕇 💆 🛅 🐼