## PAPER-1 (B.E./B. TECH.) OF JEE (MAIN)

## JEE (MAIN) 2018

## CBT TEST PAPER

(WITH SOLUTION \& ANSWER KEY)

## DATE : 16-04-2018 <br> SUBJECT : PHYSICS, CHEMISTRY, MATHEMATICS

Resonance Eduventures Ltd.
Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222| 08003444888 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

# CONNECT <br> WITH YOUR SUCCESS THROUGH RESONANCE 



JEE（ADV．） 2017 ALL INDIA RANKS IN TOP 100 FROM CLASSROOM PROGRAM


## ADMISSIONS OPEN

Classes：V to XII \＆XII＋
Target：JEE（Main＋Advanced）
JEE（Main）｜AlIMS／NEET
Pre－foundation｜Commerce \＆CLAT

Total No．of Selections

JEE（Adv） 2017


Classroom： 4095 ｜DLP＋eLP： 2146

NEET 2017
2975
Classroom： 1724 ｜DLP＋eLP： 1251

JEE（Main） 2017
24519

## ResoneT Dates

## $15^{\text {th }} \& \mathbf{2 2}^{\text {nd }}$ April 2018

Test Timings： 9 AM to 12 Noon

Л
Q®马ロ
Educating for better tomorrow

Registered \＆Corporate Office：CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Rajasthan）－ 324005 Tel．No．：0744－6607777， 6635555 ｜CIN：U80302RJ2007PLC024029

To know more：sms RESO at 56677 ｜website：www．resonance．ac．in｜e－mail：contact＠resonance．ac．in Toll Free： 1800258555 fracebook．con／ResolanceEdu $\square$ twitter．com／Resonanceedu 圆 www．youtube．com／resowatch blog．resonarce．ac．in

Educating for better tomorrow

## PHYSICS

## Straight Objective Type

This section contains 30 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which Only One is correct.

1. The relative uncertainty in the period of a satellite orbiting around the earth is $10^{-2}$. If the relative uncertainty in the radius of the orbit is negligible the relative uncertainty in the mass of the earth is :
(1) $2 \times 10^{-2}$
(2) $6 \times 10^{-2}$
(3) $3 \times 10^{-2}$
(4) $10^{-2}$

Ans. (1)
Sol. From kepler's Law
$\mathrm{T}^{2}=\frac{4 \pi^{2}}{\mathrm{GM}} \mathrm{r}^{3}$
$\left|\frac{\Delta \mathrm{M}}{\mathrm{M}}\right|=2 \frac{\Delta \mathrm{~T}}{\mathrm{~T}}=2 \times 10^{-2}$
2. At some instant a radioactive sample $S_{1}$ having an activity $5 \mu \mathrm{Ci}$ has twice the number of nuclei as another sample $S_{2}$ which has an activity of $10 \mu \mathrm{Ci}$. The half lives of $S_{1}$ and $S_{2}$ are :
(1) 5 years and 20 years, respectively
(2) 20 years and 5 years, respectively
(3) 20 years and 10 years, respectively
(4) 10 years and 20 years, respectively

Ans. (1)
Sol. Given: $\mathrm{N}_{1}=2 \mathrm{~N}_{2}$
$\lambda_{1} N_{1}=\frac{\ell \mathrm{n} 2}{\mathrm{t}_{1}} \times \mathrm{N}_{1}=5 \mu \mathrm{c}_{\mathrm{i}}$
$\lambda_{2} N_{2}=\frac{\ln 2}{\mathrm{t}_{2}} \times \mathrm{N}_{2}=10 \mu \mathrm{c}_{\mathrm{i}}$
$\frac{t_{2}}{t_{1}} \times \frac{N_{1}}{N_{2}}=\frac{1}{2}$
$\frac{t_{2}}{t_{1}}=\frac{1}{4}$
Hence 5years and 20 year
3. Two moles of helium are mixed with an moles of hydrogen. If $\frac{C_{P}}{C_{V}}=\frac{3}{2}$ for the mixture then the value of $n$ is
(1) 1
(2) 3
(3) 2
(4) $3 / 2$

Ans. (3)
Sol. $\frac{C_{p}}{C_{v}}=\frac{f_{\text {mix }}+2}{f_{\text {mix }}}=\frac{3}{2}$
$\Rightarrow \quad f_{\text {mix }}=4$
$\mathrm{f}_{\text {mix }}=\frac{\mathrm{n}_{1} \mathrm{f}_{1}+\mathrm{n}_{2} \mathrm{f}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}}$
$\Rightarrow \quad \frac{4=2 \times 3+\mathrm{n}_{2} \times 5}{2+\mathrm{n}_{2}} \quad \Rightarrow \quad \mathrm{n}_{2}=2$ mole

## Resonance Eduventures Limited

4. Unpolarized light of intensity I is incident on a system of two polarizers, A followed by B. The intensity of emergent light is $I / 2$. If a third polarizer $C$ is placed between $A$ and $B$ the intensity of emergent light is reduced to $I / 3$. The angle between the polarizers $A$ and $C$ is $\theta$, then
(1) $\cos \theta=\left(\frac{2}{3}\right)^{1 / 4}$
(2) $\cos \theta=\left(\frac{1}{3}\right)^{1 / 4}$
(3) $\cos \theta=\left(\frac{1}{3}\right)^{1 / 2}$
(4) $\cos \theta=\left(\frac{2}{3}\right)^{1 / 2}$

Ans. (1)
Sol. $A$ and $B$ have same alignment of transmission axis.
Lets assume $c$ is introduced at $\theta$ angle
$\frac{1}{2} \cos ^{2} \theta \times \cos ^{2} \theta=\frac{1}{3}$
$\cos ^{4} \theta=\frac{2}{3} \quad \Rightarrow \quad \cos \theta=\left(\frac{2}{3}\right)^{1 / 4}$
5. The de-Broglie wavelength $\left(\lambda_{B}\right)$ associated with the electron orbiting in the second excited state of hydrogen atom is related to that in the ground state ( $\lambda_{G}$ ) by :
(1) $\lambda_{B}=3 \lambda_{G}$
(2) $\lambda_{B}=2 \lambda_{G}$
(3) $\lambda_{\mathrm{B}}=3 \lambda_{\mathrm{G} / 3}$
(4) $\lambda_{\mathrm{B}}=3 \lambda_{\mathrm{G} / 2}$

Ans. (1)
Sol. $\frac{\lambda_{B}}{\lambda_{G}}=\frac{P_{a}}{P_{B}}=\frac{m v_{G}}{m v_{B}}$
$V \times \frac{z}{n} \quad$ So $\frac{\lambda_{B}}{\lambda_{G}}=\frac{n_{B}}{n_{G}}=\frac{3}{1}$
$\lambda_{B}=3 \lambda_{G}$
Length of Orbit $=\mathrm{n} \times \lambda$
$\lambda=\frac{2 \pi r}{n} \quad \Rightarrow \quad \lambda \propto \frac{1}{n}$
6. In the given circuit the current through zener diode is :

(1) 3.3 mA
(2) 2.5 mA
(3) 5.5 mA
(4) 6.7 mA

Ans. (1)
Sol. Current in $\mathrm{R}_{1}=\mathrm{I}_{1}=\frac{5}{500}$

$$
\mathrm{I}_{1}=10 \mathrm{~mA}
$$

Current in $\mathrm{R}_{2}=\mathrm{I}_{2}=\frac{10}{1500} \quad \Rightarrow \quad \mathrm{I}_{2}=\frac{20}{3} \mathrm{~mA}$
Current in zener diode $=\mathrm{I}_{1}-\mathrm{I}_{2}=\left(10-\frac{20}{3}\right) \mathrm{mA}=\frac{10}{3} \mathrm{~mA}$

## Resonance Eduventures Limited

7. The end correction of a resonance column is 1 cm . If the shortest length resonating with the tuning fork is 10 cm , the next resonating length should be :
(1) 32 cm
(2) 40 cm
(3) 28 cm
(4) 36 cm

Ans. (1)
Sol. Given : $\mathrm{e}=1 \mathrm{~cm}$
For first resonance
$\frac{\lambda}{4}=\ell_{1}+\mathrm{e}=11 \mathrm{~cm}$
For second resonance
$\frac{3 \lambda}{4}=\ell_{1}+e \Rightarrow \ell_{2}=3 \times 11-1=32 \mathrm{~cm}$
8. Two sitar strings $A$ and $B$ playing the note 'Dha' are slightly out of tune and produce beats of frequency 5 Hz . The tension of the string B is slightly increased and the beat frequency is found to decrease by 3 Hz . If the frequency of $A$ is 425 Hz . the original frequency of $B$ is :
(1) 428 Hz
(2) 430 Hz
(3) 422 Hz
(4) 420 Hz

Ans. (4)
Sol. Frequency of $B$ is either 420 Hz or 430 Hz As tension in $B$ is increased its frequency will increase.
If frequency is 430 Hz , beat frequency will increase
If frequency is 420 Hz beat frequency will decrease, hence correct answer is 420 Hz
9. A power transmission line feeds input power at 2300 V to a step down transformer with its primary windings having 4000 turns giving the output power at 230 V . If the current in the primary of the transformer is 5A and its efficiency is $90 \%$ the output current would be :
(1) 45 A
(2) 50 A
(3) 20 A
(4) 25 A

Ans. (1)
Sol. Efficiency $n=0.9=\frac{P_{s}}{P_{P}}$
$V_{S} I_{s}=0.9 \times V_{P} I_{P}$
$I_{s}=\frac{0.9 \times 2300 \times 5}{230}=45 \mathrm{~A}$
10. A body of mass $m$ starts moving from rest along $x$-axis so that its velocity varies as $v=a \sqrt{s}$ where $a$ is a constant and $s$ is the distance covered by the body. The total work done by all the forces acting on the body in the first $t$ seconds after the start of the motion is:
(1) $8 m a^{4} t^{2}$
(2) $\frac{1}{4} m a^{4} t^{2}$
(3) $4 m a^{4} t^{2}$
(4) $\frac{1}{8} m a^{4} t^{2}$

Ans. (4)
Sol. $\quad v=a \sqrt{s}=\frac{d s}{d t}$
$2 \sqrt{s}=$ at
$\mathrm{S}=\frac{\mathrm{a}^{2} \mathrm{t}^{2}}{4}$
$F=m \times \frac{a^{2}}{2}$
Work $=\frac{\mathrm{ma}^{2}}{2} \times \frac{\mathrm{a}^{2} \mathrm{t}^{2}}{4}=\frac{1}{8} \mathrm{ma}^{4} \mathrm{t}^{2}$

## Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
11. Suppose that the angular velocity of rotation of earth is increased. Then as a consequence:
(1) Weight of the object every where on the earth will decrease
(2) Weight of the object every where on the earth will increase
(3) Except at poles weight of the object on the earth will decrease
(4) There will be no change in weight anywhere on the earth.

Ans. (3)
Sol. $g^{\prime}=g-\omega^{2} R \cos ^{2} \phi$
Where $\phi$ is latitude there will be no change in gravity at poles as $\phi=90^{\circ}$
At all other points as $\omega$ increases $\mathrm{g}^{\prime}$ will decrease.
12. Both the nucleus and the atom of some element are in their respective first excited states. They get deexcited by emitting photons of wavelengths $\lambda_{N}, \lambda_{A}$ respectively. The ratio $\frac{\lambda_{N}}{\lambda_{A}}$ is closest to:
(1) $10^{-1}$
(2) $10^{-6}$
(3) 10
(4) $10^{-10}$

Ans. (2)
Sol. $\quad \frac{\lambda_{\mathrm{N}}}{\lambda_{\mathrm{a}}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{E}_{\mathrm{N}}}$
where $E_{a}$ and $E_{N}$ are energies of photons from atom and nucleus respectively. $E_{N}$ is of the order of MeV and $E_{a}$ in few eV .
So $\frac{\lambda_{\mathrm{N}}}{\lambda_{\mathrm{a}}}=10^{-6}$
13. A plane electromagnetic wave of wavelength $\lambda$ has an intensity I. It is propagating along the positive Y -direction. The allowed expressions for the electric and magnetic fields are given by :

$$
\begin{aligned}
& \text { (1) } \begin{aligned}
\overrightarrow{\mathrm{E}} & =\sqrt{\frac{2 \mathrm{I}}{\varepsilon_{0} \mathrm{C}}} \cos \left[\frac{2 \pi}{\lambda}(y-c t)\right] \hat{\mathrm{K}}_{;} \\
\overrightarrow{\mathrm{B}} & =+\frac{1}{\mathrm{c}} \mathrm{E} \hat{\mathrm{i}} \\
\overrightarrow{\mathrm{E}} & =\sqrt{\frac{2 \mathrm{I}}{\varepsilon_{0} \mathrm{c}}} \cos \left[\frac{2 \pi}{\lambda}(y-c t)\right] \hat{\mathrm{K}}_{;}
\end{aligned} \text {(3) }
\end{aligned}
$$

(2) $\vec{E}=\sqrt{\frac{I}{\varepsilon_{0} c}} \cos \left[\frac{2 \pi}{\lambda}(y-c t)\right] \hat{\mathrm{k}} ;$
(3)
$\vec{B}=\frac{1}{C} E \hat{i}$
(4) $\overrightarrow{\mathrm{E}}=\sqrt{\frac{\mathrm{I}}{\varepsilon_{0} \mathrm{C}}} \cos \left[\frac{2 \pi}{\lambda}(\mathrm{y}-\mathrm{ct})\right] \overline{\mathrm{i}} ;$
$\vec{B}=+\frac{1}{C} E \hat{i}$
$\vec{B}=\frac{1}{C} E \hat{k}$

Ans. (1)
Sol. If $\mathrm{E}_{0}$ is magnitude of electric field then $\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} \times \mathrm{C}=\mathrm{I}$
$\mathrm{E}_{0}=\sqrt{\frac{2 \mathrm{I}}{\mathrm{C} \varepsilon_{0}}}$
$B_{0}=\frac{E_{0}}{C}$
direction of $\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}$ will be along $+\hat{\mathrm{j}}$.
14. A charge $q$ is spread uniformly over an insulated loop of radius $r$. If it is rotated with an angular velocity $\omega$ with respect to normal axis then magnetic moment of the loop is :
(1) $\frac{3}{2} q \omega r^{2}$
(2) $\frac{1}{2} q \omega r^{2}$
(3) $q \omega r^{2}$
(4) $\frac{4}{3} q \omega r^{2}$

Ans. (2)

## Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

Sol.

$\frac{M}{L}=\frac{q}{2 m}$
$M=\frac{q}{2 m} \times \mathrm{mr}^{2} \omega$
$M=\frac{q \omega r^{2}}{2}$
15. A heating element has a resistance of $100 \Omega$ at room temperature. When it is connected to a supply of 220 V a steady current of 2 A passes in it and temperature is $500^{\circ} \mathrm{C}$ more than room temperature. What is the temperature coefficient of resistance of the heating element?
(1) $5 \times 10^{-4} \mathrm{C}^{-1}$
(2) $2 \times 10^{-4} \mathrm{C}^{-1}$
(3) $1 \times 10^{-4} \mathrm{C}^{-1}$
(4) $0.5 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$

Ans. (2)
Sol. Resistance after temperature increases by $500^{\circ} \mathrm{C}=\frac{220}{2}=110 \Omega$
$110=100(1+\alpha 500)$
$\alpha=\frac{10}{100 \times 500}$
$\alpha=2 \times 10^{-4} \mathrm{C}^{-1}$
16. A coil of cross-sectional area $A$ having $n$ turns is placed in a uniform magnetic field $B$. When it is rotated with an angular velocity $\omega$ the maximum e.m.f. induced in the coil will be :
(1) $\frac{3}{2} n \mathrm{BA} \omega$
(2) $3 n \mathrm{BA} \omega$
(3) $n B A \omega$
(4) $\frac{1}{2} n B A \omega$

Ans. (3)
Sol. $\varepsilon=B A \omega n \sin \omega t$
$\varepsilon_{\max }=B A \omega n$
17. A ray of light is incident at an angle of $60^{\circ}$ on one face of a prism of angle $30^{\circ}$. The emergent ray of light makes an angle of $30^{\circ}$ with incident ray. The angle made by the emergent ray with second face of prism will be :
(1) $0^{\circ}$
(2) $90^{\circ}$
(3) $30^{\circ}$
(4) $45^{\circ}$

Ans. (2)
Sol. $\delta=1+\mathrm{e}-\mathrm{A}$
$30=60+e-30^{\circ}$
$\Rightarrow \quad e=0$
So angle with face $=90^{\circ}$


## Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
18. A galvanometer with its coil resistance $25 \Omega$ requires a current of 1 mA for its full deflection. In order to construct an ammeter to read up to a current of 2 A the approximate value of the shunt resistance should be :
(1) $1.25 \times 10^{-2} \Omega$
(2) $2.5 \times 10^{-3} \Omega$
(3) $2.5 \times 10^{-2} \Omega$
(4) $1.25 \times 10^{-3} \Omega$

Ans. (1)
Sol. $\quad I_{g} R_{g}=\left(I-I_{g}\right) S$
$S \simeq \frac{10^{-3} \times 25}{2}$
$S \simeq 12.5 \times 10^{-3}$
or $1.25 \times 10^{-2} \Omega$

19. An oscillator of mass $M$ is at rest in the equilibrium position in a potential $V=\frac{1}{2} k(x-X)^{2}$. A particle of mass $m$ comes from right with speed $u$ and collides completely inelastically with M and sticks to it. This process repeats every time the oscillator crosses its equilibrium position. The amplitude of oscillations after 13 collisions is : $(M=10, m=5, u=1, k=1)$
(1) $\frac{2}{3}$
(2) $\frac{1}{\sqrt{3}}$
(3) $\sqrt{\frac{3}{5}}$
(4) $\frac{1}{2}$

Ans. (2)
Sol. In first collision mu momentum will be imparted to system. In second collision when momentum of $(M+m)$ is in opposite direction mu momentum of particle will make its momentum zero.
on $13^{\text {th }}$ collision


$$
\mathrm{M}+13 \mathrm{~m} \longrightarrow \mathrm{~V}
$$

$m u=(M+13 m) v$
$v=\frac{m u}{M+13 m}=\frac{u}{15}$
$v=\omega \mathrm{A}$
$\Rightarrow \quad \frac{u}{15}=\sqrt{\frac{K}{M+13 m}} \times A \quad \Rightarrow \quad A=\frac{1}{15} \sqrt{\frac{75}{1}}=\frac{1}{\sqrt{3}}$
20. One mole of an ideal monatomic gas is taken along the path ABCA as shown in the PV diagram. The maximum temperature attained by the gas along the path $B C$ is given by :

(1) $\frac{25}{4} \frac{P_{0} V_{0}}{R}$
(2) $\frac{5}{8} \frac{P_{0} V_{0}}{R}$
(3) $\frac{25}{8} \frac{P_{0} V_{0}}{R}$
(4) $\frac{25}{16} \frac{P_{0} V_{0}}{R}$

## Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

Ans. (3)
Sol. Equation of line $B C$
$P=P_{0}-\frac{2 P_{0}}{V_{0}}\left(V-2 V_{0}\right)$
Temperature $=\frac{P_{0} V-\frac{2 P_{0} V^{2}}{V_{0}}+4 P_{0} V}{1 \times R}$
$\mathrm{T}=\frac{\mathrm{P}_{0}}{\mathrm{R}}\left[5 \mathrm{~V}-\frac{2 \mathrm{~V}^{2}}{\mathrm{~V}_{0}}\right]$
$\frac{\mathrm{dT}}{\mathrm{dV}}=0 \quad \Rightarrow \quad 5-\frac{4 \mathrm{~V}}{\mathrm{~V}_{0}}=0 \quad \Rightarrow \quad \mathrm{~V}=\frac{5}{4} \mathrm{~V}_{0}$
$\mathrm{T}=\frac{\mathrm{P}_{0}}{\mathrm{R}}\left[5 \times \frac{5 \mathrm{~V}_{0}}{4}-\frac{2}{\mathrm{~V}_{0}} \times \frac{25}{16} \mathrm{~V}_{0}^{2}\right]$
$\mathrm{T}=\frac{25}{8} \frac{\mathrm{P}_{0} \mathrm{~V}_{0}}{\mathrm{R}}$
21. In a circuit for finding the resistance of a galvanometer by half deflection method a 6 V battery and a high resistance of $11 \mathrm{k} \Omega$ are used. The figure of merit of the galvanometer produces a deflection of $\theta=9$ divisions when current flows in the circuit. The value of the shunt resistance that can cause the deflection of $\theta / 2$ is
(1) $550 \Omega$
(2) $220 \Omega$
(3) $55 \Omega$
(4) $110 \Omega$

Ans. (4)
Sol. $I=\frac{\varepsilon}{R+G} \quad G=\frac{1}{9} K \Omega$

$$
\begin{aligned}
& \frac{I}{2}=\frac{\varepsilon}{R+\frac{G S}{G+S}} \times \frac{S}{S+G} \Rightarrow \frac{I}{2}=\frac{\varepsilon S}{R(S+G)+G S} \\
& S=\frac{R G \times \frac{I}{2}}{\varepsilon-\frac{(R+G) I}{2}} \\
& S=\frac{11 \times 10^{3} \times \frac{1}{9} \times 10^{3} \times 270 \times 10^{-6}}{6-\left(\frac{6}{2}\right)}
\end{aligned}
$$

$S=110 \Omega$


## Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
22. In the following circuit the switch $S$ is closed at $t=0$. The charge on the capacitor $\mathrm{C}_{1}$ as a function of time will be given by $\left(C_{\text {eq }}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}\right)$

(1) $C_{1} E\left[1-\exp \left(-t R / C_{1}\right)\right]$
(2) $\mathrm{C}_{\text {eq }} \mathrm{E} \exp \left(-t / \mathrm{RC}_{\text {eq }}\right)$
(3) $\mathrm{C}_{\text {eq }} \mathrm{E}\left[1-\exp \left(-t / R \mathrm{C}_{\text {eq }}\right)\right]$
(4) $\mathrm{C}_{2} \mathrm{E}\left[1-\exp \left(-t / R \mathrm{C}_{2}\right)\right]$

Ans. (3)
Sol. $q=C_{e q} E\left[1-e^{-t / R c_{e q}}\right]$
Both capacitor will have same charge as they are connected in series.

23. Let $\vec{A}=(\hat{i}+\hat{j})$ and $\vec{B}=(2 \hat{i}-\hat{j})$. The magnitude of a coplanar vector $\vec{C}$ such that $\vec{A} \cdot \vec{C}=\vec{B} \cdot \vec{C}=\vec{A} \cdot \vec{B}$ is given by :
(1) $\sqrt{\frac{9}{12}}$
(2) $\sqrt{\frac{20}{9}}$
(3) $\sqrt{\frac{5}{9}}$
(4) $\sqrt{\frac{10}{9}}$

Ans. (3)
Sol. If $\overrightarrow{\mathrm{C}}=a \hat{i}+b \hat{j}$ then
$\overrightarrow{\mathrm{A}} . \overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}} . \overrightarrow{\mathrm{B}}$
$a+b=1$
$\vec{B} . \vec{C}=\vec{A} . \vec{B}$
$2 a-b=1$
Solving equation (i) and (ii) we get
$\mathrm{a}=\frac{1}{3}, \mathrm{~b}=\frac{2}{3}$
$|\overrightarrow{\mathrm{C}}|=\sqrt{\frac{1}{9}+\frac{4}{9}}=\sqrt{\frac{5}{9}}$
24. A particle executes simple harmonic motion and is located at $x=a, b$ and $c$ at times $t_{0}, 2 t_{0}$ and $3 t_{0}$ respectively. The frequency of the oscillation is :
(1) $\frac{1}{2 \pi t_{0}} \cos ^{-1}\left(\frac{a+c}{2 b}\right)$
(2) $\frac{1}{2 \pi \mathrm{t}_{0}} \cos ^{-1}\left(\frac{a+2 b}{3 c}\right)$
(3) $\frac{1}{2 \pi t_{0}} \cos ^{-1}\left(\frac{a+b}{2 c}\right)$
(4) $\frac{1}{2 \pi t_{0}} \cos ^{-1}\left(\frac{2 a+3 c}{b}\right)$

Ans. (1)

## Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

25. A thin circular disk is in the xy plane as shown in the figure. The ratio of its moment of inertia about $z$ and $z^{\prime}$ axes will be :

(1) $1: 4$
(2) $1: 5$
(3) $1: 3$
(4) $1: 2$

Ans. (3)
Sol. $I_{z}=\frac{m R^{2}}{2}$

$$
\mathrm{I}_{\mathrm{z}}^{\prime}=\frac{3}{2} m R^{2} \frac{\mathrm{I}_{z}}{\mathrm{I}_{\mathrm{z}}^{\prime}}=\frac{1}{3}
$$

26. Two identical conducting spheres $A$ and $B$ carry equal charge. They are separated by a distance much larger than their diameters and the force between them is $F$. A third identical conducting sphere $C$ is uncharged. Sphere $C$ is first touched to $A$ then to $B$ and then removed. As a result the force between $A$ and $B$ would be equal to :
(1) $\frac{3 F}{4}$
(2) $\frac{F}{2}$
(3) $\frac{3 F}{8}$
(4) F

Ans. (3)
Sol.

$F=\frac{\mathrm{kq}^{2}}{\mathrm{r}^{2}}$ when $A$ and $C$ are touched charge on both will be $\frac{q}{2}$
Then when $B$ and $C$ are touched
$q_{B}=\frac{\frac{q}{2}+q}{2}=\frac{3 q}{4}$
$F^{\prime}=\frac{\mathrm{kq}_{A} q_{B}}{r^{2}}=\frac{k \times \frac{q}{2} \times \frac{3 q}{4}}{r^{2}}=\frac{3}{8} \frac{k q^{2}}{r^{2}}=\frac{3}{8} F$

## Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
27. Two particles of the same mass $m$ are moving in circular orbits because of force given by $F(r)=\frac{-16}{r}-r^{3}$. The first particle is at distance $r=1$ and the second at $r=4$. The best estimate for the ratio of kinetic energies of the first and the second particle is closest to :
(1) $3 \times 10^{-3}$
(2) $6 \times 10^{2}$
(3) $6 \times 10^{-2}$
(4) $10^{-1}$

Ans. (3)
Sol. $\frac{m V^{2}}{r}=\frac{16}{r}+r^{3}$
$K E_{0}=\frac{1}{2} m V^{2}$
$=\frac{1}{2}\left[16+r^{4}\right]$
$\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\frac{16+1}{2}}{\frac{16+256}{2}}=\frac{17}{272}$
$\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}} \simeq 6 \times 10^{-2}$
28. The percentage errors in quantities $P, Q, R$ and $S$ are $0.5 \%, 1 \%, 3 \%$ and $1.5 \%$ respectively in the measurement of a physical quantity $A=\frac{P^{3} Q^{2}}{\sqrt{R S}}$. The maximum percentage error in the value of $A$ will be :
(1) $6.5 \%$
(2) $7.5 \%$
(3) $6.0 \%$
(4) $8.5 \%$

Ans. (1)
Sol. $\frac{\Delta \mathrm{A}}{\mathrm{A}}=\frac{3 \Delta \mathrm{P}}{\mathrm{P}}+\frac{2 \Delta \mathrm{Q}}{\mathrm{Q}}+\frac{1}{2} \frac{\Delta \mathrm{R}}{\mathrm{R}}+\frac{\Delta \mathrm{S}}{\mathrm{S}}$
$=3 \times 0.5+2 \times 1+\frac{1}{2} \times 3+1.5$
$=1.5+2+1.5+1.5$
$\frac{\Delta A}{A}=6.5 \%$
29. A carrier wave of peak voltage 14 V is used for transmitting a message signal given to achieve a modulation index of $80 \%$ will be :
(1) 22.4 V
(2) 7 V
(3) 11.2 V
(4) 28 V

Ans. (3)
Sol. $m=\frac{A_{m}}{A_{c}}$
$\mathrm{A}_{\mathrm{m}}=0.8 \times 14$
$=11.2 \mathrm{~V}$
30. A small soap bubble of radius 4 cm is trapped inside another bubble of radius 6 cm without any contact. Let $P_{2}$ be the pressure inside the inner bubble and $P_{0}$ the pressure outside the outer bubble. Radius of another bubble with pressure difference $P_{2}-P_{0}$ between its inside and outside would be :
(1) 2.4 cm
(2) 12 cm
(3) 4.8 cm
(4) 6 cm

Ans. (1)

## Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

Sol．$\quad P_{2}=P_{0}+\frac{4 T}{6}+\frac{4 T}{4} \quad P_{2}=P_{0}+\frac{4 T}{r}$


## Resonance Eduventures Limited

## CHEMISTRY

## Straight Objective Type

This section contains 30 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4) for its answer, out of which Only One is correct.

1. For standardizing NaOH solution, which of the following is used as a primary standard ?
(1) Sodium tetraborate
(2) Ferrous Ammonium Sulfate
(3) Oxalic acid
(4) dil. HCl

Ans. (3)
Sol. Oxalic acid is used as a primary standard for NaOH standardizing.
2. Products $A$ and $B$ formed in the following reactions are respectively :


(2)

and

(3)
 and

(4)
 and


## Resonance Eduventures Limited

Ans. (1)

Sol.

3. When $\mathrm{XO}_{2}$ is fused with an alkali metal hydroxide in presence of an oxidizing agent such as $\mathrm{KNO}_{3}$; a dark green product is formed which disproportioates in acidic solution to afford a dark purple solution. X is :
(1) Mn
(2) Cr
(3) V
(4) Ti

Ans. (1)

4. The major product $B$ formed in the following reaction sequence is :

(1)

(2)

(3)

(4)


Ans. (4)

Sol.


## Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
5. In a complexometric titration of metal ion with ligand
$M$ (Metal ion) $+L$ (Ligand) $\rightarrow C$ (Complex) end point is estimated spectrophotometrically (through light absorption). If ' $M$ ' and ' $C$ ' do not absorb light and only ' $L$ ' absorbs, then the titration plot between absorbed light (A) versus volume of ligand 'L' (V) would look like :
(1)

(2)

(3)

(4)


Ans. (1)
Sol. Initially ligand consumed by metal due to formation of complex. So absorbed light (A) remain constant, after complex formation is completed, extra volume of ligand solution increases ligand concentration and also increases absorbed light.
6. The major product of the following reaction is :

(1)

(2)

(3)

(4)


Ans. (2)

Sol.

7. Among the following, the incorrect statement is :
(1) Cellulose and amylose has 1,4-glycosidic linkage.
(2) Lactose contains $\beta$-D-galactose and $\beta$-D-glucose.
(3) Maltose and lactose has 1,4-glycosidic linkage.
(4) Sucrose and amylose has 1,2-glycosidic linkage.

Ans. (4)
Sol. In amylose 1,4-glycosidic linkage is present.

## Resonance Eduventures Limited

8. In the extraction of copper from its sulphide ore, metal is finally obtained by the oxidation of cuprous sulphide with :
(1) $\mathrm{SO}_{2}$
(2) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(3) $\mathrm{Cu}_{2} \mathrm{O}$
(4) CO

Ans. (3)
Sol. $\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
9. Among the oxides of nitrogen:
$\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{4}$ and $\mathrm{N}_{2} \mathrm{O}_{5}$; the molecule(s) having nitrogen-nitrogen bond is/are :
(1) $\mathrm{N}_{2} \mathrm{O}_{3}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$
(2) $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{N}_{2} \mathrm{O}_{5}$
(3) $\mathrm{N}_{2} \mathrm{O}_{3}$ and $\mathrm{N}_{2} \mathrm{O}_{5}$
(4) Only $\mathrm{N}_{2} \mathrm{O}_{5}$

Ans. (1)

Sol.


10. Which of the following conversions involves change in both shape and hybridisation ?
(1) $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$
(2) $\mathrm{BF}_{3} \rightarrow \mathrm{BF}_{4}^{-}$
(3) $\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
(4) $\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}$

Ans. (2)
Sol. $\quad \mathrm{BF}_{3} \longrightarrow \mathrm{BF}_{4}^{-}$


Triangle planar
Tetrahedral
11. The most polar compound among the following is :
(1)

(2)

(3)

(4)


Ans. (3)

Sol. In
 the bond dipole vector of $\mathrm{C}-\mathrm{F}$ bond is not subtractive.

## Resonance Eduventures Limited

12. In Wilkinson's catalyst, the hybridization of central metal ion and its shape are respectively :
(1) $s p^{3} d$, trigonal bipyramidal
(2) $d^{2} s p^{3}$, octahedral
(3) $\mathrm{dsp}^{2}$, square planar
(4) $\mathrm{sp}^{3}$, tetrahedral

Ans. (3)
Sol. Wilkinson catalyst
$\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$
13. At 320 K , a gas $\mathrm{A}_{2}$ is $20 \%$ dissociated to $\mathrm{A}(\mathrm{g})$. The standard free energy change at 320 K and 1 atm in $\mathrm{J} \mathrm{mol}^{-1}$ is approximately : $\left(\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} ; \ln 2=0.693 ; \ln 3=1.098\right)$
(1) 1844
(2) 2068
(3) 4281
(4) 4763

Ans. (3)
Sol. $\quad A_{2}(g) \rightleftharpoons 2 A(g)$
10
$1-1 \times \frac{20}{100} \quad 2 \times \frac{20}{100}$
$\begin{array}{ll}0.8 & 0.4\end{array}$
$\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{p}_{\mathrm{A}}\right)^{2}}{\left(\mathrm{p}_{\mathrm{A}_{2}}\right)}=\frac{0.4 \times 0.4}{0.8}=0.2$
$\Delta G^{0}=-2.303 \times 8.314 \times 320 \log _{10} 0.2=4281 \mathrm{~J} / \mathrm{mole}$
14. Which of the following complexes will show geometrical isomerism ?
(1) Potassium tris(oxalato)chromate(III)
(2) Pentaaquachlorochromium(III)chloride
(3) Aquachlorobis(ethylenediamine)cobalt(II) chloride
(4) Potassium amminetrichloroplatinate(II)

Ans. (3)
Sol. $\quad\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}(\mathrm{en})_{2}\right] \mathrm{Cl}$


## Resonance Eduventures Limited

15. Which of the following statements is false ?
(1) Splitting of spectral lines in electrical field is called Stark effect.
(2) Frequency of emitted radiation from a black body goes from a lower wavelength of higher wavelength as the temperature increases.
(3) Photon has momentum as well as wavelength.
(4) Rydberg constant has unit of energy.

Ans. (2) and (4) [both are false]
Sol. When temperature is increased, black body emit high energy radiation, from higher wavelength to lower wavelength.
Rydberg constant has unit length ${ }^{-1}$ (i.e. $\mathrm{cm}^{-1}$ )
16. When 9.65 ampere current was passed for 1.0 hour into nitrobenzene in acidic medium, the amount of p -aminophenol produced is :
(1) 109.0 g
(2) 98.1 g
(3) 9.81 g
(4) 10.9 g

Ans. (3)

Sol.

$4 \mathrm{e}^{-}+4 \mathrm{H}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2} \longrightarrow \underset{\substack{\text { M.W. }=109 \mathrm{~g}}}{\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})\left(\mathrm{NH}_{2}\right)}+\mathrm{H}_{2} \mathrm{O}$
(v.f. $)=4 \quad W=Z I t=\frac{E}{F} \times I \times t \quad\left(E=\frac{M}{4}\right)$
$W=\frac{109 \times 9.65 \times 60 \times 60}{4 \times 96500}$
$\mathrm{W}=9.81 \mathrm{~g}$
17. For which of the following processes, $\Delta \mathrm{S}$ is negative ?
(1) C (diamond) $\rightarrow \mathrm{C}$ (graphite)
(2) $\mathrm{N}_{2}(\mathrm{~g}, 1 \mathrm{~atm}) \rightarrow \mathrm{N}_{2}(\mathrm{~g}, 5 \mathrm{~atm})$
(3) $\mathrm{N}_{2}(\mathrm{~g}, 273 \mathrm{~K}) \rightarrow \mathrm{N}_{2}(\mathrm{~g}, 300 \mathrm{~K})$
(4) $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g})$

Ans. (2)
Sol. $\quad N_{2}(\mathrm{~g}, 1 \mathrm{~atm}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g}, 5 \mathrm{~atm})$
$\Delta S=\left(n C_{p} \ln \frac{T_{2}}{T_{1}}\right)+n R \ln \frac{V_{2}}{V_{1}} \quad$ for isothermal process $T_{1}=T_{2}$ and $\frac{V_{2}}{V_{1}}=\frac{P_{1}}{P_{2}}$
$=0+n R \ln \frac{P_{1}}{P_{2}}=n R \ln \frac{1}{5}$
$\Delta S<0$

## Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
18. An unknown chlorohydrocarbon has $3.55 \%$ of chlorine. If each molecule of the hydrocarbon has one chlorine atom only ; chlorine atoms present in 1 g of chlorohydrocarbon are :
(Atomic wt. of $\mathrm{Cl}=35.5 \mathrm{u}$; Avogadro constant $=6.023 \times 10^{23} \mathrm{~mol}^{-1}$ )
(1) $6.023 \times 10^{9}$
(2) $6.023 \times 10^{23}$
(3) $6.023 \times 10^{21}$
(4) $6.023 \times 10^{20}$

Ans. (4)
Sol. $\quad \mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{Cl}$
$\% \mathrm{Cl}=3.55$
Weight of $\mathrm{Cl}=1 \times \frac{3.55}{100}$
$\mathrm{n}_{\mathrm{Cl}^{-}}=\frac{1 \times 3.55}{100 \times 35.5}$
No of $\mathrm{Cl}^{-}$ion $=\frac{1 \times 3.55}{100 \times 35.5} \times 6.023 \times 10^{23}$

$$
=6.023 \times 10^{20}
$$

19. The incorrect statement is :
(1) $\mathrm{Cu}^{2+}$ ion gives chocolate coloured precipitate with potassium ferrocyanide solution.
(2) $\mathrm{Cu}^{2+}$ and $\mathrm{Ni}^{2+}$ ions give black precipitate with $\mathrm{H}_{2} \mathrm{~S}$ in presence of HCl solution.
(3) Ferric ion gives blood red colour with potassium thiocyanate.
(4) $\mathrm{Cu}^{2+}$ salts give red coloured borax bead test in reducing flame.

Ans. (2)
Sol. Due to common ion effect, sufficient $S^{2-}$ concentration not produce and not formed ppt of NiS.
20. The mass of a non-volatile, non-electrolyte solute (molar mass $=50 \mathrm{~g} \mathrm{~mol}^{-1}$ ) needed to be dissolved in 114 g octane to reduce its vapour pressure to $75 \%$, is :
(1) 37.5 g
(2) 75 g
(3) 150 g
(4) 50 g

Ans. (Bonus)
Sol. $\quad \frac{P^{0}-P_{s}}{P_{s}}=\frac{n}{N}$
$\frac{100 \mathrm{P}-75 \mathrm{P}}{75 \mathrm{P}}=\frac{\frac{W}{50}}{1}$
$\frac{25}{75}=\frac{W}{50}$
$W=\frac{50}{3} g$

## Resonance Eduventures Limited

21. The incorrect geometry is represented by :
(1) $\mathrm{NF}_{3}$ - trigonal planar
(2) $\mathrm{BF}_{3}$ - trigonal planar
(3) $\mathrm{AsF}_{5}$ - trigonal bipyramidal
(4) $\mathrm{H}_{2} \mathrm{O}$ - bent

Ans. (1)
Sol. $\quad \mathrm{NF}_{3}$
 $s p^{3}$
Trigonal pyramidal
22. Assuming ideal gas behaviour, the ratio of density of ammonia to that of hydrogen chlroide at same temperature and pressure is: (Atomic wt. of Cl 35.5 u )
(1) 1.46
(2) 1.64
(3) 0.46
(4) 0.64

Ans. (3)
Sol. $d=\frac{P(M . w .)}{R T}$

$$
\frac{d_{\mathrm{NH}_{3}}}{d_{\mathrm{HCl}}}=\frac{(\mathrm{M} \cdot \mathrm{w} \cdot)_{\mathrm{NH}_{3}}}{(\text { M.W. })_{\mathrm{HCl}}}=\frac{17}{36.5}=0.46
$$

23. The correct match between items of List-I and List-II is :

|  | List-I |  | List-II |
| :--- | :--- | :--- | :--- |
| (A) | Phenelzine | (P) | Pyrimidine |
| (B) | Chloroxylenol | (Q) | Furan |
| (C) | Uracil | (R) | Hydrazine |
| (D) | Ranitidine | (S) | Phenol |
| (1) (A)-(S), (B)-(R), (C)-(Q), (D)-(P) | (2) (A)-(R), (B)-(S), (C)-(P), (D)-(Q) |  |  |
| (3) (A)-(R), (B)-(S), (C)-(Q), (D)-(P) | (4) (A)-(S), (B)-(R), (C)-(P), (D)-(Q) |  |  |

Ans. (2)
Sol. $\rightarrow$ Phenelzine contains hydrazine
$\rightarrow$ Chloroxylenol contains phenol
$\rightarrow$ Uracil is the pyrimidine base
$\rightarrow$ Ranitidine contains furan ring
24. The gas phase reaction $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is an exothermic reaction. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$, in equilibrium mixture of $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$, can be increased by :
(1) addition of an inert gas at constant pressure.
(2) lowering the temperature
(3) increasing the pressure
(4) addition of an inert gas at constant volume.

Ans. (1)
Sol. $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}=(-)$
By addition of an inert gas at constant pressure, volume increases, so reaction moving in backward direction and decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ increases.

## Resonance Eduventures Limited

25. Which one of the following is not a property of physical adsorption ?
(1) Higher the pressure, more the adsorption
(2) Greater the surface area, more the adsorption
(3) Lower the temperature, more the adsorption
(4) Unilayer adsorption occurs

Ans. (4)
Sol. Physical adsorption is multilayer adsorption.
26. A group 13 element ' $X$ ' reacts with chlorine gas to produce a compound $X C I_{3}$. $X C l_{3}$ is electron deficient and easily reacts with $\mathrm{NH}_{3}$ to form $\mathrm{Cl}_{3} \mathrm{X} \leftarrow \mathrm{NH}_{3}$ adduct; however, $\mathrm{XCl}_{3}$ does not dimerize. X is :
(1) $B$
(2) Al
(3) In
(4) Ga

Ans. (1)
Sol. $\mathrm{BCl}_{3}$

27. The major product of the following reaction is :

(1)

(2)

(3)

(4)


Ans. (3)

Sol.


Inversion takes place at the carbon containing bromine atom.

## Resonance Eduventures Limited

28. If $50 \%$ of a reaction occurs in 100 second and $75 \%$ of the reaction occurs in 200 second, the order of this reaction is :
(1) 2
(2) 3
(3) Zero
(4) 1

Ans. (4)

First order reaction as half life is constant.
29. The major product of the following reaction is :

(1)

(2)

(3)

(4)


Ans. (2)

Sol.

30. Which of the following compounds will most readily be dehydrated to give alkene under acidic condition?
(1) 4-Hydroxypentan-2-one
(2) 3-Hydroxypentan-2-one
(3) 1-Pentanol
(4) 2-Hydroxycyclopentanone

Ans. (1)
Sol.


## Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029


1. If $x=\sqrt{2^{\operatorname{cosec}^{-t} t}}$ and $y=\sqrt{2^{\sec ^{-1} t}}(|t| \geq 1)$, then $\frac{d y}{d x}$ is equal to :
(1) $\frac{y}{x}$
(2*) $-\frac{y}{x}$
(3) $-\frac{x}{y}$
(4) $\frac{x}{y}$

Ans. (2)
Sol. $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\frac{1}{2 \sqrt{2^{\sec ^{-1} t}}} 2^{\sec ^{-1} t} \ln 2\left(\frac{1}{t \sqrt{t^{2}-1}}\right)}{\frac{1}{2 \sqrt{2^{\operatorname{cosec}^{-1} t}}} 2^{\operatorname{cosec}-t} \ell n 2\left(\frac{1}{t \sqrt{t^{2}-1}}\right)}$
$=-\frac{\sqrt{2^{\sec ^{-1} t}}}{\sqrt{2^{\operatorname{cosec}^{-1 t}}}}=-\frac{y}{x}$
2. Let $N$ denote the set of all natural numbers. Define two binary relations on $N$ as $R_{1}=\{(x, y) \in N \times N: 2 x+y=10\}$ and $R_{2}=\{(x, y) \in N \times N: x+2 y=10\}$. Then
(1) Both $R_{1}$ and $R_{2}$ are transitive relations
(2) Range of $R_{2}$ is $\{1,2,3,4\}$.
(3) Range of $R_{1}$ is $\{2,4,8\}$
(4) Both $R_{1}$ and $R_{2}$ are symmetric relations.

Ans. (2)
Sol. $\quad R_{1}=\{(1,8),(2,6),(3,4),(9,2)\}$
$R_{2}=\{(8,1),(6,2),(4,3),(2,4)\}$
Range of $R_{2}=\{1,2,3,4\}$
3. The coefficient of $x^{2}$ in the expansion of the product $\left(2-x^{2}\right) \cdot\left(\left(1+2 x+3 x^{2}\right)^{6}+\left(1-4 x^{2}\right)^{6}\right)$ is :
(1) 107
(2) 108
(3) 155
(4*) 106

Ans. (4)
Sol. coefficient of $x^{2}=2$ coefficient of $x^{2}$ in $\left(\left(1+2 x+3 x^{2}\right)^{6}+\left(1-4 x^{2}\right)^{6}\right)$ - constant term

$$
\begin{aligned}
\left(1+2 x+3 x^{2}\right)^{6} & =\sum_{r=0}^{6}{ }^{6} \mathrm{C}_{r}\left(2 x+3 x^{2}\right)^{r} \\
& ={ }^{6} \mathrm{C}_{0}+{ }^{6} \mathrm{C}_{1}\left(2 x+3 \mathrm{x}^{2}\right)+{ }^{6} \mathrm{C}_{2}\left(2 x+3 \mathrm{x}^{2}\right)^{2}+\ldots .
\end{aligned}
$$

coefficient of $x^{2}=2(18+60-24)-2$
$=108-2=106$

## Resonance Eduventures Limited

4. If the area of the region bounded by the curves, $y=x^{2}, y=\frac{1}{x}$ and the lines $y=0$ and $x=t(t>1)$ is 1 sq. unit, then $t$ is equal to :
(1*) $e^{\frac{2}{3}}$
(2) $\mathrm{e}^{\frac{3}{2}}$
(3) $\frac{3}{2}$
(4) $\frac{4}{3}$

Ans. (1)
Sol. $\quad \int_{\mathrm{x}}^{1} \mathrm{x}^{2} \mathrm{dx}+\int+\frac{1}{\mathrm{x}} \mathrm{dx}=1$


$$
\frac{1}{3}+\ell n t=1 \quad \Rightarrow \quad t=e^{\frac{2}{3}}
$$

5. If the length of the latus rectum of an ellipse is 4 units and the distance between a focus and its nearest vertex on the major axis is $\frac{3}{2}$ units, then its eccentricity is :
(1) $\frac{2}{3}$
(2) $\frac{1}{2}$
(3) $\frac{1}{9}$
(4) $\frac{1}{3}$

Ans. (4)
Sol. $\frac{2 b^{2}}{a}=4 \Rightarrow \quad b^{2}=2 a$
$b^{2}=a^{2}\left(1-e^{2}\right), a(1-e)=\frac{3}{2}$
$2=a(1-e)(1+e)$
$2=\frac{3}{2}(1+e) \quad e=\frac{1}{3}$
6. The number of numbers between 2,000 and 5,000 that can be formed with the digits $0,1,2,3,4$ (repetition of digits is not allowed) and are multiple of 3 is :
(1) 36
(2) 30
(3) 24
(4) 48

Ans. (2)
Sol. number can be formed y $(0,1,2,3)$ or $(0,2,3,4)$
number of 4 digits number $=2 \times 3!+3 \times 3!=30$
7. Two different families $A$ and $B$ are blessed with equal number of children. There are 3 tickests to be distributed amongst the children of these families so that no child gets more than one ticket. If the probability that all the tickets go to the children of the family $B$ is $\frac{1}{12}$, then the number of children in each family is:
(1) 6
(2) 5
(3) 3
(4) 4

Ans. (2)
Sol. Let n number of children are there in each family
$\frac{1}{12}=\frac{{ }^{n} C_{3} \cdot 3!}{{ }^{2 n} C_{3} \cdot 3!}$
$\frac{{ }^{n} C_{3}}{{ }^{2 n} C_{3}}=\frac{1}{12} n=5$

## Resonance Eduventures Limited

8. $\lim _{x \rightarrow 0} \frac{(27+x)^{\frac{1}{3}}-3}{9-(27+x)^{\frac{2}{3}}}$ equals :
(1) $-\frac{1}{6}$
(2) $\frac{1}{6}$
(3) $\frac{1}{3}$
(4) $-\frac{1}{3}$

Ans. (1)

Sol.
$\lim _{x \rightarrow 0} \frac{3\left[\left(1+\frac{x}{27}\right)^{\frac{1}{3}}-1\right]}{9\left[1-\left(1+\frac{x}{27}\right)^{\frac{2}{3}}\right]}$
$\lim _{x \rightarrow 0} \frac{1}{3}\left[\frac{\frac{x}{81}}{-\frac{2}{3} \cdot \frac{x}{27}}\right]=\frac{-1}{6}$
9. Let $p, q$ and $r$ be real numbers $(p \neq q, r \neq 0)$, such that the roots of the equation $\frac{1}{x+p}+\frac{1}{x+q}=\frac{1}{r}$ are equal in magnitude but opposite in sign, then the sum of squares of these roots is equal to :
(1) $p^{2}+q^{2}$
(2) $\frac{p^{2}+q^{2}}{2}$
(3) $2\left(p^{2}+q^{2}\right)$
(4) $p^{2}+q^{2}+r^{2}$

Ans. (1)
Sol. $\quad(2 x+p+q) r=(x+p)(x+q)$
$x^{2}+(p+q-2 r) x+p q-p r-q r=0$
$p+q=2 r$
$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
$=0-2[p q-p r-q r]=-2 p q+2 r(p+q)=-2 p q+(p+q)^{2}=p^{2}+q^{2}$
10. Let $\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{n}}\left(x_{i} \neq 0\right.$ for $\left.i=1,2, \ldots . n\right)$ be in A.P. such that $x_{1}=4$ and $x_{21}=20$. If $n$ is the least positive integer for which $x_{n}>50$, then $\sum_{i=1}^{n}\left(\frac{1}{x_{i}}\right)$ is equal to :
(1) 3
(2) $\frac{1}{8}$
(3) $\frac{13}{4}$
(4) $\frac{13}{8}$

Ans. (3)
Sol. $\quad \frac{1}{4}+20 . d=\frac{1}{20}$
$d=\frac{-1}{100}$
$\frac{1}{x_{n}}<\frac{1}{50}$
$\frac{1}{4}-\frac{\mathrm{n}-1}{100}<\frac{1}{50} \quad \Rightarrow \quad n>24$
$\mathrm{n}=25$
$\sum_{i=1}^{25}\left(\frac{1}{x_{i}}\right)=\frac{25}{2}\left[2 \times \frac{1}{4}-\frac{1}{100} \times 24\right]=\frac{13}{4}$

## Resonance Eduventures Limited

11. The differential equation representing the family of ellipses having foci either on the $x$-axis or on the $y$-axis, centre at the origin and passing through the point $(0,3)$ is :
(1*) $x y y^{\prime}-y^{2}+9=0$
(2) $x y y^{\prime \prime}+x\left(y^{\prime}\right)^{2}-y y^{\prime}=0$
(3) $x y y^{\prime}+y^{2}-9=0$
(4) $x+y y^{\prime \prime}=0$

Ans. (1)
Sol. Equation of ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$\operatorname{Passes}(0,3) \quad \Rightarrow \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{9}=1$
$\frac{2 x}{a^{2}}+\frac{2 y}{9} \frac{d y}{d x}=0$

$$
\begin{align*}
& \frac{x}{a^{2}}=-\frac{y}{9} \frac{d y}{d x}  \tag{1}\\
& \frac{1}{a^{2}}=-\frac{y}{9 x} y^{1} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \text { By (1) \& (2) } \quad \text { D. equation is } \\
& \\
& -\frac{x y}{9} y^{1}+\frac{y^{2}}{9}=1 \\
& \Rightarrow \quad x y y^{1}-y^{2}+9=0
\end{aligned}
$$

12. The sum of the intercepts on the coordinate axes of the plane passing trhough the point $(-2,-2,2)$ and containing the line joining the points $(1,-1,2)$ and $(1,1,1)$, is :
(1) 4
(2) 12
(3) -8
(4) -4

Ans. (4)
Sol. Equation plane

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x+2 & y+2 & z-2 \\
-3 & -1 & 0 \\
-3 & -3 & 1
\end{array}\right|=0 \\
& \Rightarrow \\
& \Rightarrow \\
& \Rightarrow \quad x-3 y-2)+3(y+2)+6(z-2)=0 \\
& \text { sum of intercepts }=-8+\frac{8}{3}+\frac{8}{6}=-4
\end{aligned}
$$

13. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$ and $B=A^{20}$. Then the sum of the elements of the first column of $B$ is :
(1) 210
(2) 211
(3) 251
(4) 231

Ans. (4)
Sol. $\quad A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$
$A^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right] ; A^{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 6 & 3 & 1\end{array}\right]$
$A^{4}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 10 & 4 & 1\end{array}\right] \ldots . A^{20}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 20 & 1 & 0 \\ 210 & 20 & 1\end{array}\right]$
Sum of the elements of first column $=231$

## Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

14．Let $A, B$ and $C$ be three events，which are pair－wise independent and $\bar{E}$ denotes the complement of an event $E$ ．If $P(A \cap B \cap C)=0$ and $P(C)>0$ ，then $P[(\bar{A} \cap \bar{B}) \mid C]$ is equal to ：
（1）$P(\bar{A})-P(B)$
（2）$P(\bar{A})-P(\bar{B})$
（3）$P(\bar{A})+P(\bar{B})$
（4）$P(A)+P(\bar{B})$

Ans．（1）
Sol．$\quad \mathrm{P}[(\overline{\mathrm{A}} \cap \overline{\mathrm{B}}) \mid \mathrm{C}]=\frac{\mathrm{P}[(\overline{\mathrm{A}} \cup \overline{\mathrm{B}}) \cap \mathrm{C}]}{\mathrm{P}(\mathrm{C})}$

$$
\begin{aligned}
& =\frac{P(C)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)}{P(C)} \\
& =\frac{P(C)-P(A) P(C)+P(B) P(C)}{P(C)} \\
& =1-P(A)-P(B) \\
& =P(\bar{A})-P(B) \text { or } P(\bar{B})-P(A)
\end{aligned}
$$

15．If $p \rightarrow(\sim p \vee \sim q)$ is false，then the truth values of $p$ and $q$ are respectively ：
（1）$F, F$
（2） $\mathrm{T}, \mathrm{T}$
（3）F，T
（4）T，F

Ans．（2）
Sol．$\quad P \rightarrow(\sim p \vee \sim q)$

| p | q | $\sim \mathrm{p} \vee \sim \mathrm{q}$ | $\mathrm{p} \rightarrow(\sim \mathrm{p} \vee \sim \mathrm{q})$ |
| :---: | :---: | :---: | :---: |
| T | T | F | F |
| T | F | T | T |
| F | T | T | T |
| F | F | T | T |

16．If the function $f$ defined as $f(x)=\frac{1}{x}-\frac{k-1}{e^{2 x}-1}, x \neq 0$ ，is continuous at $x=0$ ，then the ordered pair $(k, f(0))$ is equal to：
$(1)(2,1)$
$(2)(3,1)$
$(3)(3,2)$
（4）$\left(\frac{1}{3}, 2\right)$

Ans．（2）
Sol．$f(x)=\frac{1}{x}-\frac{k-1}{e^{2 x}-1} ; x \neq 0$
$f(x)$ is continuous at $x=0$

$$
\begin{aligned}
& \Rightarrow f(0)=\operatorname{Lim}_{x \rightarrow 0} \frac{1}{x}-\frac{k-1}{e^{2 x}-1} \\
& =\operatorname{Lim}_{x \rightarrow 0} \frac{\left(1+(2 x)+\frac{1}{2!}(2 x)^{2}+\ldots \ldots \ldots(-1-x(k-1)\right.}{2 x^{2}\left(\frac{e^{2 x}-1}{2 x}\right)}
\end{aligned}
$$

Clearly $\mathrm{k}=3$ and $\mathrm{f}(0)=1$

## Resonance Eduventures Limited

17. If the angle between the lines, $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{5-x}{-2}=\frac{7 y-14}{p}=\frac{z-3}{4}$ is $\cos ^{-1}\left(\frac{2}{3}\right)$, then $p$ is equal to :
(1) $\frac{2}{7}$
(2) $\frac{7}{2}$
(3) $-\frac{4}{7}$
(4) $-\frac{7}{4}$

Ans. (2)
Sol. $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{2}=\frac{y-2}{P / 7}=\frac{z-3}{4}$
Angle between both lines is $\cos ^{-1}\left(\frac{2}{3}\right)=\cos ^{-1}\left(\frac{4+\frac{2 P}{7}+4}{3 \cdot \sqrt{4+\frac{P^{2}}{49}+16}}\right)$
$\Rightarrow \frac{2}{3}=\frac{56+2 P}{3 \sqrt{P^{2}+980}} \Rightarrow \sqrt{P^{2}+980}=P+28 \Rightarrow P^{2}+980=P^{2}+56 P+784 \Rightarrow 56 P=196 \Rightarrow P=\frac{7}{2}$
18. The locus of the point of intersection of the lines, $\sqrt{2} x-y+4 \sqrt{2} k=0$ and $\sqrt{2} k x+k y-4 \sqrt{2}=0$ ( $k$ is any non-zero real parameter), is :
(1) an ellipse whose eccentricity is $\frac{1}{\sqrt{3}}$.
(2) a hyperbola whose eccentricity is $\sqrt{3}$
(3) a hyperbola with length of its transverse axis $8 \sqrt{2}$
(4) an ellipse with length of its major axis $8 \sqrt{2}$.

Ans. (3)
Sol. $\sqrt{2} x-y+4 \sqrt{2} k=0$
$\sqrt{2} k x+k y-4 \sqrt{2}=0$
Eliminating $k$ by (i) and (ii)
$(\sqrt{2} x+y)\left(\frac{\sqrt{2} x-y}{-4 \sqrt{2}}\right)=4 \sqrt{2}$
$2 x^{2}-y^{2}=-32$
$\frac{y^{2}}{32}-\frac{x^{2}}{16}=1 \quad$ Hyperbola
$e=\sqrt{1+\frac{16}{32}}=\sqrt{\frac{3}{2}}$ and length of transverse axis $=8 \sqrt{2}$
19. A man on the top of a vertical tower observes a car moving at a uniform speed towards the tower on a horizonatal road. If it takes 18 min . for the angle of depression of the car to change from $30^{\circ}$ to $45^{\circ}$; then after this, the time taken (in min.) by the car to reach the foot of the tower, is :
(1) $\frac{9}{2}(\sqrt{3}-1)$
(2) $18(1+\sqrt{3})$
(3) $18(\sqrt{3}-1)$
(4) $9(1+\sqrt{3})$

Ans. (4)
Sol. Let length of tower $=h$
$\Rightarrow A C^{\prime}=A B=h$
and $A C=A B \cot 30^{\circ}=\sqrt{3} h \quad \Rightarrow \quad C C^{\prime}=(\sqrt{3}-1) h$
Time taken by car form C to $\mathrm{C}^{\prime}=18 \mathrm{~min}$
$\Rightarrow$ time take by car to reach the foot of the tower $=\frac{18}{\sqrt{3}-1} \mathrm{~min}$.

$=9(\sqrt{3}+1) \mathrm{min}$

## Resonance Eduventures Limited

20. If an angle $A$ of a $\triangle A B C$ satisfies $5 \cos A+3=0$, then the roots of the quadratic equaiton, $9 x^{2}+27 x+20=0$ are :
(1) $\sec A, \cot A$
(2) $\sec A, \tan A$
(3) $\tan \mathrm{A}, \cos \mathrm{A}$
(4) $\sin A, \sec A$

Ans. (2)
Sol. $5 \cos A+3=0 \Rightarrow \cos A=-\frac{3}{5}$ clearly $A \in\left(90^{\circ}, 180^{\circ}\right)$
Now roots of equation $9 x^{2}+27 x+20=0$ are $-\frac{5}{3}$ and $-\frac{4}{3}$
$\Rightarrow$ Roots secA and tanA
21. If a circle $C$, whose radius is 3 , touches externally the circle, $x^{2}+y^{2}+2 x-4 y-4=0$ at the point (2, 2), then the length of the intercept cut by this circle $C$, on the $x$-axis is equal to :
(1) $2 \sqrt{3}$
(2) $\sqrt{5}$
(3) $3 \sqrt{2}$
(4) $2 \sqrt{5}$

Ans. (4)
Sol. Centre of given circle $=(-1,2)$
and radius $=\sqrt{1+4+4}=3$
centre of required circle $(5,2)$
or $(-4,2)$
length of intercept on $x$-axis will be square in both circle
so one required circle $(x-5)^{2}+(y-2)^{2}=3^{2}$
$x^{2}+y^{2}-10 x-4 y+20=0$
Length of $x$ intercept $=2 \sqrt{g^{2}-c}$
$=2 \sqrt{25-20}=2 \sqrt{5}$
22. Let $P$ be a point on the parabola, $x^{2}=4 y$. If the distance of $P$ from the centre of the circle, $x^{2}+y^{2}+6 x+8=0$ is minimum, then the equation of the tangent to the parabola at $P$, is :
(1) $x+y+1=0$
(2) $x+4 y-2=0$
(3) $x+2 y=0$
(4) $x-y+3=0$

Ans. 1
Sol. Let $P\left(2 t, t^{2}\right)$
equation normal at $P$ to $x^{2}=4 y$ be
$y-t^{2}=-\frac{1}{t}(x-2 t)$
it passes through $(-3,0)$
$0-t^{2}=-\frac{1}{t}(-3-2 t)$
$t^{3}+2 t+3=0$
$(t+1)\left(t^{2}-t+3\right)=0$
$\Rightarrow t=-1$
Point $P$ is $(-2,1)$
equation of tangent to $x^{2}=4 y$ at $(-2,1)$
$x(-2)=2(y+1)$
$x+y+1=0$

## Resonance Eduventures Limited

23. If $f(x)=\int_{0}^{x} t(\sin x-\sin t) d t$ then :
(1) $f^{\prime \prime \prime}(x)-f^{\prime \prime}(x)=\cos x-2 x \sin x$
(2) $f^{\prime \prime \prime}(x)+f^{\prime \prime}(x)-f^{\prime}(x)=\cos x$
(3) $f^{\prime \prime \prime}(x)+f^{\prime \prime}(x)=\sin x$
(4) $f^{\prime \prime \prime}(x)+f^{\prime}(x)=\cos x-2 x \sin x$

Ans. 4
Sol. $f(x)=\int_{0}^{x} t(\sin x-\sin t) d t$
$f(x)=\sin x \int_{0}^{x} t d t-\int_{0}^{x} t \sin t d t$
$f^{\prime}(x)=(\sin x) x+\cos x \int_{0}^{x} t d t-x \sin x$
$f^{\prime}(x)=\cos x \int_{0}^{x} t d t$
$f^{\prime}(x)=(\cos x) x-(\sin x) \int_{0}^{x} t d t$
$f^{\prime \prime \prime}(x)=x(-\sin x)+\cos x-(\sin x) x-(\cos x) \int_{0}^{x} t d t$
$f^{\prime \prime \prime}(x)+f^{\prime}(x)=\cos x-2 x \sin x$
24. The number of values of $k$ for which the system of linear equations,
$(k+2) x+10 y=k$
$k x+(k+3) y=k-1$ has no soution, is :
(1) 1
(2) 2
(3) 3
(4) 4

Ans. (1)
Sol. For no solution
$\frac{k+2}{k}=\frac{10}{k+3} \neq \frac{k}{k-1}$
$(k+2)(k+3)=10 k$
$k^{2}-5 k+6=0 \Rightarrow k=2,3$
$k \neq 2$ for $k=2$ both lines identical
so $k=3$ only
so number of values of $k$ is 1
25. If $\int \frac{\tan x}{1+\tan x+\tan ^{2} x} d x=x-\frac{K}{\sqrt{A}} \tan ^{-1}\left(\frac{K \tan x+1}{\sqrt{A}}\right)+C$, $(C$ is a constant of integration), then the ordered pair $(K, A)$ is equal to
$(1)(2,1)$
$(2)(2,3)$
$(3)(-2,1)$
$(4)(-2,3)$

Ans. (2)
Sol. $\quad I=\int \frac{\tan }{1+\tan x+\tan ^{2} x} d x$
$\int\left(1-\frac{\sec ^{2} x}{1+\tan x+\tan ^{2} x}\right) d x$
$=\mathrm{x}-\int \frac{\mathrm{dt}}{1+\mathrm{t}+\mathrm{t}^{2}}, \quad$ where $\tan \mathrm{x}=\mathrm{t} \quad \Rightarrow \quad \sec ^{2} \mathrm{xdx}=\mathrm{dt}$
$=\int \frac{d t}{\left(t+\frac{1}{2}\right)^{2}+\frac{3}{4}}=x-\frac{1}{\sqrt{3} / 2} \tan ^{-1}\left(\frac{t+\frac{1}{2}}{\sqrt{3} / 2}\right)+C=x-\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 \tan x+1}{\sqrt{\sqrt{3}}}\right)+C$
$=k=2, A=3$.

## Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
26. The least positive integer $n$ for which $\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)^{n}=1$, is
(1) 2
(2) 5
(3) 6
(4) 3

Ans. (4)
Sol. $\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)^{n}=1$
$\left(\frac{-2 \omega^{2}}{-2 \omega}\right)^{n}=1$
$\omega^{n}=1$
least positive integer value of $n$ is 3 .
27. The sum of the first 20 terms of the series $1+\frac{3}{2}+\frac{7}{4}+\frac{15}{8}+\frac{31}{16}+\ldots$, is :
(1) $39+\frac{1}{2^{19}}$
(2) $38+\frac{1}{2^{20}}$
(3) $38+\frac{1}{2^{19}}$
(4) $39+\frac{1}{2^{20}}$

Ans. (3)
Sol. $1+\frac{3}{2}+\frac{7}{4}+\frac{15}{8}+\frac{31}{16}+\ldots \ldots$
$=(2-1)+\left(2-\frac{1}{2}\right)+\left(2-\frac{1}{4}\right)+\left(2-\frac{1}{8}\right)+\left(2-\frac{1}{16}\right)+\ldots \ldots .$. upto 20 terms
$=40-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots\right.$. up to 20 terms $)$
$=40-\left(\frac{1-\left(\frac{1}{2}\right)^{20}}{1-\frac{1}{2}}\right)=40-2+\frac{1}{2^{19}}=38+\frac{1}{2^{19}}$
28. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{c}=\hat{j}-\hat{k}$ and a vector $\vec{b}$ be such that $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \cdot \vec{b}=3$. Then $|\vec{b}|$ equals :
(1) $\frac{11}{3}$
(2) $\frac{11}{\sqrt{3}}$
(3) $\sqrt{\frac{11}{3}}$
(4) $\frac{\sqrt{11}}{3}$

Ans. (3)
Sol. $\vec{a} \times \vec{b}=\vec{c}$
$\vec{a} \times(\vec{a} \times \vec{b})=\vec{a} \times \vec{c}$
$(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}=\vec{a} \times \vec{c}$
$3 \vec{a}-3 \vec{b}=-2 \hat{i}+\hat{j}+\hat{k}$
$3 i+3 j+3 \hat{k}-3 \hat{b}=-2 \hat{i}+\hat{j}+\hat{k}$
$\overrightarrow{\mathrm{b}}=\frac{1}{3}(5 \hat{i}+2 \hat{j}+2 \hat{k})$
$|\overrightarrow{\mathrm{b}}|=\frac{\sqrt{25+4+4}}{3}$
$|\vec{b}|=\sqrt{\frac{11}{3}}$

## Resonance Eduventures Limited

29. The mean and the standard deviation (s.d.) of five observations are 9 and 0 , respectively. If one of the observations is changed such that the mean of the new set of five observations becomes 10 , then their s.d. is :
(1) 0
(2) 2
(3) 4
(4) 1

Ans. (1)
Sol. Standard deviations with be same so S.D is 0
30. Let $M$ and $m$ be respectively the absolute maximum and the absolute minimum values of the function, $f(x)=2 x^{3}-9 x^{2}+12 x+5$ in the interval [0,3]. Then $M-m$ is equal to :
(1) 9
(2) 4
(3) 1
(4) 5

Ans. (1)
Sol. $f(x)=2 x^{3}-9 x^{2}+12+5, \quad x \in[0,3]$

$$
f^{\prime}(x)=6 x^{2}-18 x+12
$$

$f^{\prime}(x)=6(x-1)(x-2)$
$f(1)=10$
$f(2)=9$
$f(0)=5$
$f(3)=14$
$M=14, \quad m-5 \quad \Rightarrow \quad M-m=9$

## Resonance Eduventures Limited



