	Resonance [®]
	INDIAN ASSOCIATION OF PHYSICS TEACHERS
	NATIONAL STANDARD EXAMINATION IN PHYSICS (NSEP) 2017-18
Exar	mination Date : 26-11-2017 Time: 2 Hrs. Max. Marks : 240
Q.	PAPER CODE : P160 HBCSE Olympiad (STAGE - 1)
Write t assess	the question paper code mentioned above on YOUR answer sheet (in the space provided), otherwise your answer sheet will NOT be sed. Note that the same Q. P. Code appears on each page of the question paper.
	INSTRUCTIONS TO CANDIDATES
1.	Use of mobile phones, smartphones, ipads during examination is STRICTLY PROHIBITED.
2.	In addition to this question paper, you are given answer sheet along with Candidate's copy.
3.	On the answer sheet, make all the entries carefully in the space provided ONLY in BLOCK CAPITALS as well as by properly darkening the appropriate bubbles.
	Incomplete/Incorrect/carelessly filled information may disqualify your candidature.
4.	On the answer sheet, use only BLUE or BLACK BALL POINT PEN for making entries and filling the bubbles.
5.	Question paper has two parts. In Part A1(Q. Nos 1 to 60) each question has four alternatives, Out of which only one is correct. Choose the correct alternative and fill the appropriate bubble, as shown.
	Q. No.22 (a) (c) (d)
	In Part A2 (Q. Nos. 61 to 70) each question has four alternatives out of which any number of alternatives (1, 2, 3 or 4) may be correct. You have to choose ALL correct alternatives and fill the appropriate bubbles, as shown.
	Q. No.64 (a) (c) (c)
6.	For Part A1, each correct answer carries 3 marks whereas 1 mark will be deducted for each wrong answer. In Part A2, you get 6 marks if all the correct alternatives are marked. No negative marks in this part.
7.	Any rough work should be done only in the space provided.
8.	Use of non-programmable calculator is allowed.
9.	No candidate should leave the examination hall before the completion of the examination.
10.	After submitting your answer paper, take away the Candidate's copy for your reference.
	Answer sheets are evaluated using machine, hence CHANGE OF ENTRY IS NOT ALLOWED
	Scratching or overwriting may result in a wrong score
	DO NOT WRITE ON THE BACK SIDE OF THE ANSWER SHEET.
Read	the following instructions after submitting the answer sheet
11.	Comments regarding this question paper, if any, may be filled in Google forms only at https://google/forms/9GP03NRgUVuhWJn52 till 28 th November, 2017.
12.	The answers/solutions to this question paper will be available on our website — www.iapt.org.in by 2 nd December, 2017.
13.	CERTIFICATES and AWARDS – Following certificates are awarded by the LAPT to students successful in NSEs (i) Certificates to "Centre Top 10%" students (ii) Merit Certificates to "Statewise Top 1%" students (iii) Merit Certificates and a book prize to "National Top 1%" students
14.	Result sheets can be downloaded from our website in the month of February. The "Centre Top 10%" certificates will be dispatched to the Prof-in-charge of the centre by February, 2017.
15.	List of students (with centre number and roll number only) having score above MAS will be displayed on our website (www.iapt.org.in) by 22 nd December, 2017. See the Eligibility Clause in the Student's brochure on our website.
16.	Students eligible for the INO Examination on the basis of selection criteria mentioned in Student's brochure will be informed accordingly.
	Resonance Eduventures Ltd.
Re	CORPORATE OFFICE : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : +91-744-3012222, 6635555 Toll Free : 1800 258 5555 g. Office : J-2, Jawahar Nagar, Main Road, Kota (Raj.)-324005 Ph. No.: +91-744-3192222 FAX No. : +91-022-39167222 Website : www.resonance.ac.in E-mail : contact@resonance.ac.in CIN: U80302RJ2007PLC024029
	This solution was download from Resonance Olympiad 2017 Solution portal

A – 1 ONLY ONE OUT OF FOUR OPTIONS IS CORRECT 1. Consider two point masses m1 and m2 connected by alight rigid rod of length r0. The moment of inertia of the system about an axis passing through their centre of mass and perpendicular to the rigid rod is given by (A) $\frac{m_1m_2}{2(m_1+m_2)}r_0^2$ (B) $\frac{m_1m_2}{m_1+m_2}r_0^2$ (C) $\frac{2m_1m_2}{m_1+m_2}r_0^2$ (D) $\frac{m_1^2+m_2^2}{m_1+m_2}r_0^2$ Ans. (B) Sol. ur_0^2 2. Motion of a particle in a plane is described by the non-orthogonal set of coordinates (p, q) with unit vectors (\hat{p}, \hat{q}) inclined at an angle θ as shown in the diagram. If the mass of the particle is m, its kinetic energy is given by $\left(\dot{\mathbf{x}} = \frac{d\mathbf{x}}{dt} \right)$ ĝ θ ĝ (A) $\frac{1}{2}m(\dot{p}^{2} + \dot{q}^{2} + \dot{p}\dot{q} \cos\theta)$ (B) $\frac{1}{2}m(\dot{p}^2 + \dot{q}^2 - \dot{p}\dot{q}(1 - \sin\theta))$ (C) $\frac{1}{2}m(\dot{p}^{2} + \dot{q}^{2} + 2\dot{p}\dot{q}\cos\theta)$ (D) $\frac{1}{2}$ m($\dot{p}^{2} + \dot{q}^{2} + \dot{p}\dot{q} \cot \theta$) Ans. (C) Sol. $\vec{r} = (P\hat{P} + q\hat{q})$ $\vec{v} = \frac{d\vec{r}}{dt} = \frac{dp}{dt}\hat{p} + \frac{dq}{dt}\hat{q}$ $\vec{v} \cdot \vec{v} = \left(\frac{dp}{dt}\right)^2 + \left(\frac{dq}{dt}\right)^2 + 2pq\cos\theta$ K.E. = $\frac{1}{2}m(p^2 + q^2 + 2pq\cos\theta)$

Resonance Examination IN PHYSICS (Olympiad Stage-1) 2017-18 | 26-11-2017

3. A man is going up in a lift (open at the top) moving with a constant velocity 3 m/s. He throws a ball up at 5 m/sec relative to the lift when the lift is 50 m above the ground. Height of the lift when the ball meets it during its downward journey is $(g = 10 \text{ m/s}^2)$

Sol.
$$T = \frac{2(5)}{10} = 1 \sec (1)$$

Ans.

h = 50 + 3(1) = 53m

4. When a body is suspended from a fixed point by a spring, the angular frequency of its vertical oscillations is ω_1 . When a different spring is used, the angular frequency is ω_2 . The angular frequency of vertical oscillations when both the springs are used together in series is given by

(A)
$$\omega = \left[\omega_1^2 + \omega_2^2\right]^{\frac{1}{2}}$$
 (B) $\omega = \left[\frac{\omega_1^2 + \omega_2^2}{2}\right]^{\frac{1}{2}}$ (C) $\omega = \left[\frac{\omega_1^2 \omega_2^2}{\left(\omega_1^2 + \omega_2^2\right)}\right]^{\frac{1}{2}}$ (D) $\omega = \left[\frac{\omega_1^2 \omega_2^2}{2\left(\omega_1^2 + \omega_2^2\right)}\right]^{\frac{1}{2}}$

Г.

Sol.

5. A small pond of depth 0.5 m deep is exposed to a cold winter with outside temperature of 263 K. Thermal conductivity of ice is K = 2.2 W m⁻¹ K⁻¹, latent heat L = 3.4 x 10⁵ Jkg⁻¹ and density ρ = 0.9×10^3 kgm⁻³. Take the temperature of the pond to be 273 K. The time taken for the whole pond to freeze is about.

NSEP271116-3

- A body of mass 4 kg moves under the action of a force $\vec{F} = (4\hat{i} + 12t^2\hat{j})N$, where t is the time in 6. second. The initial velocity of the particle is $(2\hat{i} + \hat{j} + 2\hat{k})ms^{-1}$. If the force is applied for 1 s, work done is : (A) 4 J (C) 12 J (B) 8 J (D) 16 J (D) Ans. $\int \vec{F} dt = \Delta \vec{p}$ Sol. $\int_{0}^{1} (4\hat{i} + 12\hat{t}) dt = m(\vec{v}_{f} - \vec{v}_{i})$ $\Rightarrow \qquad 4\hat{i} + \frac{12}{3}t^3\Big|_0^1\hat{j} = 4(\vec{v}_{\rm f} - \vec{v}_{\rm i})$ \Rightarrow $\hat{i} + \hat{j} = \vec{v}_{f} - (2\hat{i} + \hat{j} + 2\hat{k})$ $\Rightarrow \qquad \overline{v}_{f} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ \Rightarrow $|\overline{v}_{f}| = \sqrt{9+4+4} = \sqrt{17}$ $\left|\overline{v}_{i}\right| = \sqrt{4+1+4} = 3$ $\Delta K.E = \frac{1}{2}4(17-9) = 2 \times 8 = 16 \text{ J}$
- 7. A racing car moves along circular track of radius b. The car starts from rest and its speed increases at a constant rate α . Let the angle between the velocity and the acceleration be θ at time t. Then (cos θ) is :

(A) 0
(B)
$$\alpha t^{2}/b$$
(C) $\frac{b}{(b + \alpha t^{2})}$
(D) $\frac{b}{(b^{2} + \alpha^{2}t^{4})^{\frac{1}{2}}}$
Ans. (D)
Sol.

$$\int \alpha^{\alpha t} \int \alpha^{\alpha$$

8. A small fish, 4cm below the surface of a lake, is viewed through a thin converging lens of focal length 30 cm held 2 cm above the water surface. Refractive index of water is 1.33. The image of the fish from the lens is at a distance of

(A) 10 cm (B) 8 cm (C) 6 cm	(D) 4 cm
-----------------------------	----------

Ans. (C)

Sol.

9. A horizontal ray of light passes through a prism of refractive index 1.5 and apex angle 4° and then strikes a vertical plane mirror placed to the right of the prism. If after reflection, the ray is to be horizontal, then the mirror must be rotated through an angle

(A) 1° clockwise (B) 1° anticlockwise (C) 2° clockwise (D) 2° anticlockwise Ans. (A) Sol.

Mirror must be rotated by 1° in clockwise direction (A)

Educating for better tomorrow

10. An isolated metallic object is charged in vacuum to a potential V_0 using a suitable source, its electrostatic energy being W₀. It is then disconnected from the source and immersed in a large volume of dielectric with dielectric constant K. The electrostatic energy of the sphere in the dielectric is :

(A)
$$K^2 W_0$$
 (B) $K W_0$ (C) $\frac{W_0}{K^2}$ (D) $\frac{W_0}{K}$
Ans. (D)
Sol. $U = \frac{Q^2}{2C}$ since C will become k times
So U will become $\frac{1}{k}$ times
Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | NSEP271116-5

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

11. Two identical coils each of self-inductance L, are connected in series and are placed so close to each other that all the flux from one coil links with the other. The total self-inductance of the system is :

Ans. (A) L (B) 2L (C) 3L (D) 4L
Sol. (D)

$$M = k\sqrt{L_1L_2} = L$$

 $\phi = LI + LI + 2mI = 4 LI = LeqI$
Leq = 4L

12. A coil 2.0 cm in diameter has 300 turns. If the coil carries a current of 10 mA and lies in a magnetic field 5×10^{-2} T, the maximum torque experienced by the coil is :

(A)
$$4.7 \times 10^{-2}$$
 N-m (B) 4.7×10^{-4} N-m (C) 4.7×10^{-5} N-m (D) 4.7×10^{-6} N-m
Ans. (C)
Sol. $\tau_{max} = NiAB$

$$\tau_{\text{max}} = \text{NiAB}$$

$$\tau_{\text{max}} = 300 . \ 10 \times 10^{-3} \times \frac{\pi 4 \times 10^{-4}}{4} \times 5 \times 10^{-2} = 4.7 \times 10^{-5}$$

13. A particle performs simple harmonic motion at a frequency f. The frequency at which its kinetic energy varies is :

f 2

Ans. (B)

Sol. K.E. =
$$\frac{1}{2}m\omega^2 A^2 \sin^2(\omega t + \varphi)$$

K.E.

14. In cases of real images formed by a thin convex lens, the linear magnification is (I) directly proportional to the image distance, (II) inversely proportional to the object distance, (III) directly proportional to the distance of image from the nearest principal focus, (IV) inversely proportional to the distance of the object from the nearest principal focus. From these the correct statements are : (A) (I) and (II) only.
(B) (III) and (IV) only

٧

f

(C) (I), (II),(III) and (IV) all. (D) None of (I), (II), (III) and (IV). (B)

٠,

Sol.

$$m = \frac{v}{u} \Rightarrow \frac{1}{v} - \frac{1}{u} = \frac{1}{f} \Rightarrow 1 - \frac{v}{u} = \frac{v}{f} \Rightarrow 1 - m =$$

$$m = 1 - \frac{v}{f} = \frac{f - v}{f}$$
and $\frac{u}{v} - 1 = \frac{u}{f} \Rightarrow \frac{u}{v} = \frac{1 + u}{f} = \frac{f + u}{f}$

$$m = \frac{v}{u} = \frac{f}{f + u}$$

$$u = -(f + x) \Rightarrow m = \frac{f}{f - f - x} = -\frac{f}{x}$$

$$v = f + y \Rightarrow m = \frac{f - f - y}{f} = -\frac{y}{f}$$

$$m \propto \frac{1}{x}, \ m \propto \frac{1}{y}$$

 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
 NSEP271116-6

15. An infinitely long straight non-magnetic conducting wire of radius a carries a dc current I. The magnetic field B, at a distance r (r < a) from axis of the wire is :

(A)
$$\frac{\mu_0 I}{2\pi a}$$
 (B) $\frac{\mu_0 I r}{2\pi a^2}$ (C) $\frac{2\mu_0 I r}{\pi a^2}$ (D) $\frac{\mu_0 I r^2}{2\pi a^3}$

Ans. (B)

2r

- Sol. $B = \frac{\mu_0 Ir}{2} = \frac{\mu_0 Ir}{2\pi a^2}$ 16. A quantity α is defined as $\alpha = \frac{e^2}{4\pi\epsilon_0 c \hbar}$, where e is electric charge, $\hbar = \frac{h}{2\pi}$ is the reduced Planck's constant and c is the speed of light. The dimensions of α are (A) $[M^0 L^0 T^0 I^0]$ (B) $[M^1 L^{-1} T^2 I^{-2}]$ (C) $[M^2 L^1 T^{-1} I^0]$ (D) $[M^0 L^3 T^{-1} I^{-2}]$ Ans. (A) Sol. $[\alpha] = \left[\frac{e^2}{\epsilon_0}\right] \left[\frac{1}{hc}\right]$ $= [Fr^2] \frac{1}{[E\lambda]}$ $= [M^1 L^1 T^{-2} L^2] \frac{1}{[M^1 L^2 T^{-2} L^1]} = [M^1 L^3 T^{-2} M^{-1} L^{-3} T^2] = [M^0 L^0 T^0]$
- **17.** The earth's magnetic field at a certain point is 7.0×10^{-5} T. This field is to be balanced by a magnetic field at the centre of a circular current carrying coil of radius 5.0 cm by suitably orienting it. If the coil has 100 turns then the required current is about (A) 28 mA (B) 56 mA (C) 100 mA (D) 560 mA

Ans. (B)
Sol.
$$\frac{N\mu_0 I}{I} = B_E \Rightarrow I = \frac{B_E 2r}{I}$$

$$I = \frac{7 \times 10^{-5} \times 2 \times 5 \times 10^{-2}}{10^2 \left(4 \times \frac{22}{7} \times 10^{-7}\right)} = 5.57 \times 10^{-2} = 55.7 \times 10^{-3} \text{A} = 55.7 \text{ mA}$$

Nμ₀

Educating for better tomorrow

18. The equation correctly represented by the following graph is (a and b are constants)

Ans. (D)
Sol.
$$\log y = m \log x + C$$

 $\log y = \log c'x^m$
 $y = c'x^m$
 $y = ax^b$
(B) $ax^2 + by^2 = 0$ (C) $x + y = ab$ (D) $y = ax^b$
(D) $y = ax^b$

Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

NSEP271116-7

- 19. Which one of the following devices does not respond to the intensity of light incident on it ?
 - (A) Photoresistor (LDR)
 - (C) Light Emitting Diode

- (B) Photodiode
- (D) Solar Cell

- Ans. (C)
- Sol. Theory based
- 20. Consider a parallel plate capacitor. When half of the space between the plates is filled with some dielectric material of dielectric constant K as shown in Fig. (1) below, the capacitance is C₁. However, if the same dielectric material fills half the space as shown in Fig. (2), the capacitance is C₂. Therefore, the ratio C₁ : C₂ is

八

29. A network of six identical capacitors, each of capacitance C is formed as shown below. The equivalent capacitance between the point A and B is

- Ans. (D)
- Sol. Rearrange the circuit

30. A cylinder on whose surfaces there is a vertical electric field of varying magnitude as shown. The electric field is uniform on the top surface as well as on the bottom surface therefore, this cylinder encloses

(A) no net charge

(B) net positive charge

(C) net negative charge

(D) There is not enough information to determine whether or not there is net charge inside the cylinder.

Ans. (B)

Sol. Consider a Gaussian surface

$$\phi = (800 - 400)A = \frac{q_{in}}{\varepsilon_0}$$

 $q_{in} = 400 \epsilon_0 A$

 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

31. Two identical solid block A and B are made of two different materials. Block A floats in a liquid with half of its volume submerged. When block B is pasted over A, the combination is found to just float in the liquid. The ratio of the densities of the liquid, material of A and material of B is given by (A) 1 : 2 : 3 (B) 2:1:4 (C) 2 : 1 : 3 (D) 1:3:2 Ans. (C) $\frac{\rho A}{\rho \ell} = \frac{1}{2} \qquad \qquad \Rightarrow \qquad \frac{\rho A}{\rho B} = \frac{1}{3}$ Sol. $\rho_{A}Vg + \rho_{B}Vg = \rho\ell_{2}Vg$ $\rho_A + \rho_B = 2\rho_e$ $\rho_{\rm B} = 3\rho_{\rm A}$ $\rho_{\ell} = 2\rho_A$ $\rho_{\ell}: \rho_{A}: \rho_{B} = = 2:1:3$ 32. In an X ray tube the electrons are expected to strike the target with a velocity that is 10% of the velocity of light. The applied voltage should be (A) 517.6 V (B) 1052 V (C) 2.559 kV (D) 5.680 kV Ans. (C) Sol. $v_e = 0.1C = 0.3 \times 10^8$ m/s Assuming non-relatioistic case : $v = \frac{9.1 \times 9 \times 10^{-17}}{2 \times 1.6 \times 10^{-19}} = \frac{81.9}{3.2} \times 100$ = 2559 volt = 2.559 kv 33. When observed from the earth the angular diameter of the sun is 0.5 degree. The diameter of the image of the sun when formed in a concave mirror of focal length 0.5 m will be about (A) 3.0 mm (B) 4.4 mm (C) 5.6 mm (D) 8.8 mm Ans. (B) Sol. $D_{I} = \frac{5}{10} \times 0.5 \times \frac{\pi}{180} = \frac{\pi}{180 \times 4} = 4.36 \text{mm} \approx 4.4 \text{mm}$ 34. The decimal number that is represented by the binary number $(100011.101)_2$ is (A) 23.350 (B) 35.625 (C) 39.245 (D) 42.455 Ans. (B) $1 \times 2^{5} + 1 \times 2^{1} + 1 \times 2^{\circ} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$ Sol. = 32 + 2 + 1 + 0.5 + 0.125 = 35.625

- **35.** The excess pressure inside a soap bubble is equal to 2 mm of kerosene (density 0.8 g cm⁻³). If the diameter of the bubble is 3.0 cm, the surface tension of soap solution is
 - (A) 39.2 dyne cm⁻¹ (B) 45.0 dyne cm⁻¹ (C) 51.1 dyne cm⁻¹ (D) 58.8 dyne cm⁻¹

Sol. $\frac{4T}{R} = \rho g(2mm)$

$$\Rightarrow \frac{dT}{d} = \rho g (2 \text{ mm})$$

 $\Rightarrow \qquad \mathsf{T} = \frac{0.8 \times 980 \times 3 \times (.2)}{8} = 9.8 \times 6 = 58.8$

36. Let V and I be the readings of the voltmeter and the ammeter respectively as shown in the figure. Let R_V and R_A be their corresponding resistance Therefore,

$$(A) R = \frac{V}{I}$$

$$(B) R = \frac{V}{I - \left(\frac{V}{R_v}\right)}$$

$$(C) R = R_v - R_A$$

$$(D) R = \frac{V(R + R_A)}{IR_A}$$

37. A man stands at rest in front of a large wall. A sound source of frequency 400 Hz is placed between him and the wall. The source is now moved towards the wall at a speed of 1 m/s. The number of beats heard per second will be(speed of sound in air is 345 m/s)

Sol.
$$\Delta f = \frac{c}{c-u} \cdot f - \frac{c}{c+u} f = \frac{cf2u}{c^2 - u^2} = \frac{2uf}{c}$$

 $\Delta f = \frac{2.1.400}{345} = \frac{800}{345} = 2.32$

38. A hollow sphere of inner radius 9 cm and outer radius 10 cm floats half submerged in a liquid of specific gravity 0.8. The density of the material of the spere is

(A) $0.84g \text{ cm}^{-3}$ (B) $1.48g \text{ cm}^{-3}$ (C) $1.84g \text{ cm}^{-3}$ (D) $1.24g \text{ cm}^{-3}$

Sol.
$$\frac{4}{3}\pi (1000r^3 - 729r^3)\rho = \frac{2}{3}\pi 1000r^3 0.8\rho\omega$$

 $271\rho = 4\omega\rho_{\omega}$

 $\rho = 1.48 \rho_{\omega} = 1.48 \text{ gm/cm}^3$

39. Rays from an object immersed in water ($\mu = 1.33$) traverse a spherical air bubble of radius R. If the object is located far away from the bubble, its image as seen by the observer located on the other side of the bubble will be

Resonance Examination IN PHYSICS (Olympiad Stage-1) 2017-18 | 26-11-2017

$$\frac{4}{3v} - \frac{1}{-5R} = \frac{\frac{4}{3} - 1}{-R}$$

$$\frac{4}{3v} + \frac{1}{5R} = -\frac{1}{3R} \Rightarrow \frac{4}{3v} = -\frac{1}{3R} - \frac{1}{5R} = -\frac{8}{15R}$$

$$v = -\frac{5R}{2}$$

$$m_2 = -\frac{\frac{5R}{2(4/3)}}{-\frac{5R}{1}} = +\frac{3}{8}$$

$$m_1 m_2 \approx \pm 0$$

Educating for better tomorrow

40. A 10 ohm resistor is connected to a supply voltage alternating between +4V and -2V as shown in the following graph. The average power dissipated in the resistor per cycle is

41. In the following arrangement the pulley is assumed to be light and the string inextensible. The acceleration of the system can be determined by considering conservation of a certain physical quantity. The physical quantity conserved and the acceleration respectively, are

Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

Ans. (A)

Sol. No dissipative forces so total mech energy is conserved

$$(3 + 1)gx - 2gx = \frac{1}{2}(3+1+2)v^{2}$$

$$\Rightarrow 2gx = 3v^{2}$$

$$\Rightarrow 2gv = 6v\frac{dv}{2dt}$$

$$\Rightarrow \frac{dv}{dt} = \frac{g}{3}$$

42. Two cells each of emf E and internal resistance r₁ and r₂ respectively are connected in series with an external resistance R. The potential difference between the terminals of the first cell will be zero when R is equal to

(A)
$$\frac{r_1 + r_2}{2}$$
 (B) $\sqrt{r_1^2 - r_2^2}$ (C) $r_1 - r_2$ (D) $\frac{r_1 r_2}{r_1 + r_2}$

Ans. (C)

- Sol. $\varepsilon_1 \left\{ \frac{\varepsilon_1 + \varepsilon_2}{r_1 + r_2 + R} \right\} r_1 = 0$ $r_1 + r_2 + R = 2r_1 \implies R = r_1 - r_2$
- 43. A student uses a convex lens to determine the width of a slit. For this he fixes the positions of the object and the screen and moves the lens to get a real image on the screen. The images of the slit width are found to be 2.1 cm and 0.48 cm wide respectively when the lens is moved through 15 cm. Therefore, the slit width and the focal length of the lens respectively, are.
 (A) 1 cm, 9.3 cm
 (B) 1 cm, 10.5 cm
 (C) 2 cm, 12.8 cm
 (D) 2 cm, 15.2 cm

Sol.
$$h_0 = \sqrt{h_1 h_2} = \sqrt{2.1 \times 0.48}$$

$$= \sqrt{0.7 \times 3 \times 0.16 \times 3}$$

$$= 3 \times 0.4 \times \sqrt{0.7}$$

For case I

$$\frac{h_i}{h_0} = \frac{2.1}{1} = 2.1 \text{ cm} = \frac{y}{x}$$

$$y = 2.1x \qquad \dots(i)$$

$$y - x = 15 \text{ cm}$$

$$2.1x - x = 15$$

$$1.1 x = 15$$

$$x = \frac{150}{11} \text{ cm} = 13.6$$

$$\frac{1}{2.1x} - \frac{1}{-x} = \frac{1}{f}$$

$$\frac{2.1 + 1}{2.1x} = \frac{1}{f}$$

$$\Rightarrow \qquad f = \frac{2.1x}{3.1} = \frac{21}{31} \times \frac{150}{11} \text{ cm} \simeq 9.3 \text{ cm}$$

44. A particle rests in equilibrium under two forces of repulsion whose centres are at distance of a and b from the particle. The forces vary as the cube of the distance. The forces per unit mass are k and k' respectively. If the particle be slightly displaced towards one of them the motion is simple harmonic with the time period equal to

(A)
$$\frac{2\pi}{\sqrt{3\left(\frac{k}{a^3} + \frac{k'}{b^3}\right)}}$$
 (B) $\frac{2\pi}{\sqrt{\left(\frac{k}{a^3} + \frac{k'}{b^3}\right)}}$ (C) $\frac{2\pi}{\sqrt{\left(\frac{k}{a^4} + \frac{k'}{b^4}\right)}}$ (D) $\frac{2\pi}{\sqrt{3\left(\frac{k}{a^4} + \frac{k'}{b^4}\right)}}$
(D)

sol. Deleted

Ans.

45. In the following circuit the current is in phase with the applied voltage. Therefore, the current in the circuit and the frequency of the source voltage respectively, are

(A)
$$\frac{V_i}{R}$$
 and $\frac{1}{2\pi\sqrt{LC}}$ (B) zero and $\frac{1}{\sqrt{LC}}$ (C) $\sqrt{\frac{C}{L}}V_i$ and $\frac{2}{\pi\sqrt{LC}}$ (D) $4\sqrt{\frac{C}{LR^2}}$ and $\frac{2}{\sqrt{LC}}$

Ans. (A)

- Sol. Since there is only one atom, so number of line will be 3
- **47.** The following figure shows the section ABC of an equilateral triangular prism. A ray of light enters the prism along LM and emerges along QD. If the refractive index of the material of the prism is 1.6, angle LMN is

Sol.

 $\frac{p_f^2}{2M} = \frac{2}{3} \frac{p_i^2}{2m}$ $\frac{m}{M} = \frac{2}{3} = \frac{v}{u} = e$

49.An object 1 cm long lies along the principal axis of a convex lens of focal length 15 cm, the centre
of the object being at a distance of 20 cm from the lens. Therefore , the size of the image is
(A) 0.3cm(B) 3 cm(C) 9 cm(D) 12 cm

Ans. (C)

Sol. u = -20 f = + 15

 $\frac{1}{v} + \frac{1}{20} = \frac{1}{15} \Rightarrow \frac{1}{V} = \frac{4}{60} - \frac{3}{60} \Rightarrow V = 60$ $\left|\frac{dv}{du}\right| = \left|\frac{v^2}{u^2}\right| = 9$ du = 1 cmdv = 9 cm

50. Acidified water from certain reservoir kept at a potential V falls in the form of small droplets each of radius r through a hole into a hollow conducting sphere of radius a. The sphere is insulated and is initially at zero potential. If the drops continue to fall until the sphere is half full, the potential acquired by the sphere is

Group of question Nos 51 to 55 are based on the following paragraph and its subsequent continuation of after some question.

The following question are concerned with experiments of the characterization and use of a moving coil galvanometer.

The series combination of variable resistance R, one 100 Ω resistor and moving coil galvanometer is connected to a mobile phone charger having negligible internal resistance. The zero of the galvanometer lies at the centre and the pointer can move 30 division full scale on either side depending on the direction of current. The reading of the galvanometer is 10 divisions and the voltages across the galvanometer and 100 Ω resistor are respectively 12 mV and 16 mV.

51. The figure of merit of the galvanometer is microampere per division is :

(A) 16	(B) 20	(C) 32	(D) 10	
R R	Corporate Office :	CG Tower, A-46 & 52, IPIA, Nea	ar City Mall, Jhalawar I	Road, Kota (Raj.)- 324005
/ Kesonance	Website : www.reso	onance.ac.in E-mail : contact@r	resonance.ac.in	NEED271116 10
Educating for better tomorrow	Toll Free : 1800 258 5	5555 CIN: U80302RJ2007PLC0240	029	NSEF271110-19

	ating for better tomorrow EXAMINATION IN PHYSICS (Olympiad Stage-1) 2017-18 26-11-2017						
Ans.	(A)						
52. Ans.	The resistance of the galvanometer is ohm is :(A) 50Ω (B) 75Ω (C) 100Ω (D) 80Ω The series combination of the galvanometer with a resistance of R is connected across an ideal voltage supply of 12 V and this time the galvanometer shows full scale deflection of 30 divisions.(B)						
53. Ans.	The value of R is nearly (A) 12.5 kΩ (B) 25 kΩ (C) 75 kΩ (D) 100 kΩ (B)						
54.	A 24 Ω resistance is connected to a 5 V battery with internal resistance of 1 Ω . A 25 k Ω resistance is connected in series with the galvanometer and this combination is used to measure the voltage across the 24 Ω resistance. The number of divisions shown in the galvanometer is						
Ans.	(D)						
55. Ans. Sol.	Now a 1000 µF capacitor is charged using the 12 V supply and is discharged through the galvanometer-resistance combination used in the previous question. The current i (in ampere) at different time t (in second) are recorded. A graph of (ln i) against (t) is plotted. The slope of the graph is (A) =0.02 s ⁻¹ (B) =0.01 s ⁻¹ (C) = 0.04 s ⁻¹ (D) + 0.04 s ⁻¹ (C) = 10 to 55 Case-1 (D) = 0.01 s ⁻¹ (C) = 0.04 s ⁻¹ (D) + 0.04 s ⁻¹ (D) + 0.04 s ⁻¹ (C) = 10 to 55 Case-1 (D) = 16 \times 10^{-3} \Rightarrow 10^3 t_0 = 16 \times 10^{-3} \Rightarrow t_0 = 16 \times 10^{-6} \text{ A} $\frac{G}{100} = \frac{3}{4} \Rightarrow G = 75\Omega$ Case-2 (G) Case						

- (D) None of the above
- Ans. (B)
- Sol. As the magnitude of force does not matter. The torque would still be zero.
- A neutral metal bar moves at a constant velocity v to the right through a region of uniform magnetic field directed out the page, as shown.
 Therefore,

- (A) positive charges accumulate to the left side and negative charges to the right side of the rod
- (B) negative charges accumulate to the left side and positive charges to the right side of the rod.
- (C) positive charges accumulate to the top end and negative charges to the bottom end of the rod
- (D) negative charges accumulate to the top end and positive charges to the bottom end of the rod **Ans.** (D)

		NATIONAL STANDARD EXA	MINATION IN PHYSICS	(Olympiad Stage-1) 2017-1	8 26-11-2017
58.	Two moles of	hydrogen are mixed with	n moles of helium.	The root mean square	speed of gas
	molecules in th	ne mixture is $\sqrt{2}$ times the	speed of sound in the	he mixture. Then n is.	
	(A) 3	(B) 2	(C) 1.5	(D) 2.5	
Ans.	(B)				
Sol.	$V_{rms} = \sqrt{\frac{3RT}{M_{mix.}}}$				
	$V_{sound} = \sqrt{\frac{\gamma R}{M_{mix}}}$	Γ			
	$v_{rms} = \sqrt{2} V_{sour}$	nd			
	$\sqrt{\frac{3RT}{M_{mix.}}} = \sqrt{2}$	$\sqrt{\frac{\gamma RT}{M_{mix}}}$			
	$r = \frac{3}{2}$				
	$r_{mix} = \frac{n_1 C_{P_1} + r}{n_1 C_{v_1} + r}$	$\frac{D_2C_{P_2}}{D_2C_{V_2}}$			
	$\frac{3}{2} = \frac{2 \times \frac{7R}{2} + n}{2 \times \frac{5R}{2} + n}$	$\frac{\times \frac{5R}{2}}{\times \frac{3R}{2}} \Rightarrow \frac{3}{2} = \frac{14+5n}{10+3n} \Rightarrow$	30 + 9n = 28 + 10n :	⇒ n = 2	

59. In the figure shown below masses of blocks A and B are 3 kg and 6 kg respectively. The force constants of springs S₁ and S₂ are 160 N/m and 40 N/m respectively. Length of the light string connecting the blocks is 8 m. The system is released from rest with the springs at their natural lengths. The maximum elongation of spring S₁ will be :

 $=\frac{6\times9.8}{200}=\frac{3\times9.8}{100}$ $u^{2}=0.294m$

 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

In Q. Nos. 61 to 70 any number of options (1 or 2 or 3 or all 4) may be correct. You are to identify all of them correctly to get 6 marks. Even if one answer identified is incorrect or one correct answer is missed, you get zero marks.

61. A ray is incident on a refracting surface of RI μ at an angle of incidence i and the corresponding angle of refraction is r. The deviation of the ray after refraction is given by δ = i-r. Then, one may conclude that

(A) r increase	s with I	(B) δ increases with i				
						1(1)

(C) δ decreases with I (D) the maximum value of δ is $\cos^{-1}\left(\frac{1}{\mu}\right)$

- Ans. (ABD) Sol. $\delta = i - r$ when $i \uparrow, r \uparrow, \delta \uparrow$ $\delta_{max} = 90 - \sin^{-1}\frac{1}{u} = \cos^{-1}\frac{1}{u}$
- 62. In a series R-C circuit the supply voltage (Vs) is kept constant at 2V and the frequency f of the sinusoidal voltage is varied from 500 Hz to 2000 Hz. The voltage across the resistance R = 1000 ohm is measured each time as V_R. For the determination of the C a student wants to draw a linear graph and try to get C from the slope. Then she may draw a graph of

(A)
$$f^2$$
 against V_R^2 (B) $\frac{1}{f^2}$ against $\frac{V_S^2}{V_R^2}$ (C) $\frac{1}{f^2}$ against $\frac{1}{V_R^2}$ (D) f against $\frac{V_R}{\sqrt{V_s^2 - V_R^2}}$
Ans. (BCD)
Sol. $V_R = \frac{VR}{\sqrt{R^2 + (\frac{1}{2\pi f c})^2}}$
 $R^2 + (\frac{1}{2\pi f c})^2 = \frac{V_R^2}{V_R^2}R^2$
 $(\frac{1}{2\pi f c}) = \sqrt{\frac{V^2 - V_R^2}{V_R^2}}R$
 $2\pi f c (R) = \frac{V_R}{\sqrt{V^2 - V_R^2}}$ is a straight line.

$$\frac{1}{f^2}vs\frac{1}{v_R^2}$$
 is also straight line

63. Two balls A and B moving in the same direction collide. The mass of B is p times that of A. Before the collision the velocity of A was q times that of B. After the collision A comes to rest. If e be the coefficient of restitution then which of the following conclusion/s is/are correct ?

(A) $e = \frac{p+q}{pq-p}$ (B) $e = \frac{p+q}{pq+q}$ (C) $p \ge \frac{q}{q-2}$ (D) $p \ge 1$

(ACD)				
M →	qu	● <mark>B</mark> mp	I	
mqu + mpu	= mp v _f			
$v_f = \frac{(q+p)u}{p}$	-			
$e = \frac{(q+p)\frac{u}{p}}{qu-u}$	$-=\frac{q+p}{pq-p}$			
$e \le 1$				
$\frac{q+p}{pq-p} \le 1$				
$p \geq \frac{q}{q-2}$				

64. A convex lens and concave lens are kept in contact and the combination is used for the formation of image of a body by keeping it at different places on the principal axis. The image formed by this combination of lenses can be :

(A) Magnified, inverted and real

- (C) Diminished, erect and virtual
- (B) Diminished, inverted and real
- (D) Magnified, erect and virtual

Ans. (ABCD)

Sol. Combination may behave converging In that case (a), (b) & (d) are possible . If combination behaves like diverging c will be correct. So all the options are correct.

65. In a bipolar junction transistor

- (A) the most heavily doped region is the emitter
- (B) the level of doping is the same in both the emitter and the collector
- (C) its base is the thinnest part
- (D) when connected in common emitter configuration a base current is generally of the order of μA
- Ans. (ACD)
- **Sol.** (ACD) based on practical information.
- **66.** A particle starting form rest at the highest point slides down the outside of a smooth vertical circular track of radius 0.3 m. When it leaves the track its vertical fall is h and the linear velocity is v. The angle made by the radius at that position of the particle with the vertical is θ . Now consider the following observation : (g = 10 m/s²)

(I) h = 0.1 m and $\cos \theta = 2/3$. (II) h = 0.2 m and $\cos \theta = 1/3$. (III) $v = \sqrt{2} \text{ m/s}^{-1}$. (IV) After leaving the circular track the particle will describe a parabolic path.

Therefore,

- (A) (I) and (III) both are correct
- (C) only (III) is correct

(B) only (II) is incorrect(D) (IV) is correct

 Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

 Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in

 Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029

- **67.** A small bar magnet is suspended by a thread. A torque is applied and the magnet is found to execute angular oscillations. The time period of oscillations
 - (A) decreases with the moment of the magnet
 - (B) increases with the increase of the horizontal component of the earth's magnetic filed
 - (C) will remain unchanged even if another magnet is kept at a distance
 - (D) depends on the mass of the magnet

Sol.
$$T = 2\pi \sqrt{\frac{I}{MB}}$$

 $I\uparrow, T\uparrow \mid B\uparrow, T\uparrow \mid I = \frac{m\ell^2}{12}$

So correct options are (A,D)

- **68.** Two identical rods made of two different metals A and B with thermal conductivities K_A and K_B respectively are joined end to end. The free end of A is kept at a temperature T_1 while the free end of B is kept at a temperature T_2 (< T_1). Therefore, in the steady state
 - of b is kept at a temperature T_2 (< T_1). Therefore, in the steady state
 - (A) the temperature of the junction will be determined only by K_{A} and K_{B}
 - (B) if the lengths of the rods are doubled the rate of heat flow will be halved.
 - (C) if the temperature at the two free ends are interchanged the junction temperature will change

(D) the composite rod has an equivalent thermal conductivity of $\frac{2K_{_A}K_{_B}}{K_{_A}+K_{_B}}$

Ans. (BCD)

Sol.	$\frac{T_1 - T_j}{\frac{L}{k_A A}} = \frac{T_2 - T_j}{\frac{L}{k_B A}}$ $\Rightarrow \qquad (T_1 - T_j)k_A = (T_2 - T_j)k_B$ So T _j depends on k _A , k _B & T ₁ , T ₂ $\frac{L}{k_A A} + \frac{L}{k_A A} = \frac{2L}{k_A A} \qquad \Rightarrow \qquad k_{eq} = \frac{2k_A k_B}{k_A + k_A A}$
	B, C, D are correct.
69. Δns	If a system is made to undergo a change from an initial state to a final state by adiabatic process only, then (A) the work done is different for different paths connecting the two states (B) there is no work done since there is no transfer of heat (C) the internal energy of the system will change (D) the work done is the same for all adiabatic paths.
Sol	Adiabatic process $\Delta \Omega = 0$ $du = -dw$ du depends on initial and final position
	(C, D)
70.	A body of mass 1.0 kg moves in X-Y plane under the influence of a conservative force. Its potential
	energy is given by $U = 2x + 3y$ where (x, y) denote the coordinates of the body. The body is at rest
	at $(2, -4)$ initially. All the quantities have SI units. Therefore, the body
	(A) moves along a parabolic path
	(B) moves with a constant acceleration
	(C) never crosses the X axis
	(D) has a speed of $2\sqrt{13}$ m/s at time t = 2s.
Ans.	(BCD)
Sol.	$F = -2\hat{i} - 3\hat{j}$
	$\overline{a} = -2\hat{i} - 3\hat{j}$

- (b) correct
- (d) $\overline{v} = 2\sqrt{4+9} = 2\sqrt{13}$

We have reaped the benefits of starting early. Being the toppers, we recommend you to do the same.

ALL INDIA RANK KALPIT VEERWAL JEE MAIN

ALL INDIA RANK SAURAV YADAV JEE ADVANCED

INDIA RANK SANKEERTH S NEET

ADMISSION ANNOUNCEMENT

Enroll Now for Academic Session 2018-19 at Coaching Fee of 2017-18

Academic Benefits*

- More than 800 Academic Hours & 500 Classes
- More than 15000 Academic Questions
- More than 100 Testing Hours

Classroom Contact Programs for Class V to XII

Target: JEE (Main+Advanced) | JEE (Main) AIIMS/ NEET | Pre-foundation

Financial Benefits*

- Upto Rs. 35000+ Saving on 1 Year Course Fee
- 50% Concession on Admission Form Fee
- Upto 90% Scholarship on Course Fee

Test Dates: 03rd, 10th & 24th Dec 2017

Toll Free: 1800 258 5555 🕴 facebook.com/ResonanceEdu 📓 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🚺 ResonanceEdu.blogspot.com

T&CAPPIY