INDIAN ASSOCIATION OF CHEMISTRY TEACHERS
 NATIONAL STANDARD EXAMINATION IN CHEMISTRY (NSEC) 2016-17

Examination Date : 27-11-2016

Max. Marks : 240

PAPER CODE : C322

HBCSE Olympiad (STAGE - 1)

Write the question paper code mentioned above on YOUR answer sheet (in the space provided), otherwise your answer sheet will NOT be assessed. Note that the same Q. P. Code appears on each page of the question paper.

INSTRUCTION TO CANDIDATES

1. Use of mobile phones, smart phones, ip ads during examination is STRICTLY PROHIBITED.
2. In addition to this question paper, you are given answer sheet along with Candidate's copy.
3. On the answer sheet, fill up all the entries carefully in the space provided, ONLY In BLOCK CAPITALS. Use only BLUE or BACK BALL PEN for making entries and marking answer. Incomplete / incorrect / carelessly filled information may disqualify your candidature.
4. On the answer sheet, use only BLUE or BLACK BALL POINT PEN for making entries and filling the bubbles.
5. The question paper contain 80 multiple-choice question. Each question has 4 options, out of which only one is correct. Choose the correct alternative and fill the appropriate bubble, as shown

6. A correct answer carries 3 marks and 1 mark will be deducted for each wrong answer.
7. Any rough work should be done only in the space provided.
8. Periodic Table is provided at the end of the question paper.
9. Use of a nonprogrammable calculator is allowed.
10. No candidate should leave the examination hall before the completion of the examination.
11. After submitting your answer paper, take away the Candidate's copy for your reference.

Please DO NOT make any mar other than filling the appropriate bubbles properly in the space provided on the answer sheet. Answer sheet are evaluated using machine, hence CHANGE OF ENTRY IS NOT ALLOWED.
Scratching or overwriting may result in wrong score. DO NOT WRITE ANYTHING ON THE BACK OF ANSWER SHEET.
Read the following instructions after submitting the answer sheet.
12. Comment regarding this question paper, if any, may be sent by email only to iapt.nsc@gmail.com till $29^{\text {th }}$ November 2016.
13. The answers/solutions to this question paper will be available on our website www.iapt.org.in by $2^{\text {nd }}$ December, 2016.
14. Certificates \& Awards

Following certificates are awarded by the IAPT to students successful in NSEs
(i) Certificates to "Centre Top" 10\% students
(ii) Merit certificates to "State wise Top" 1% students.
(iii) Merit certificate and a prize in term to "National wise" Top 1% students.
15. Result sheet and the "Centre Top 10\%" certificates will be dispatched to the Prof-in-charge of the centre by February, 2017.
16. List of students (with center number and roll number only) having score above MAS will be display on our website (www.iapt.org.in) by $\mathbf{2 2}^{\text {nd }}$ December, 2016. See the Eligibility Clause in the Student's brochure on our website.
17. Students eligible for the INO Examination on the basis of selection criteria mentioned in Student's brochure will be informed accordingly.

Resonance Eduventures Ltd.

CORPORATE OFFICE : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph.No. : +91-744-3012222, 6635555 | Toll Free : 18002585555
Reg. Office : J-2, Jawahar Nagar, Main Road, Kota (Raj.)-324005 | Ph. No.: +91-744-3192222 | FAX No. : +91-022-39167222
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in |CIN: U80302RJ2007PLC024029 This solution was download from Resonance Olympiad 2016 Solution portal

Resonance Forward Admission \& Scholarship Test (ResoFAST)

Be FAST to be the FIRST

ADMISSION ANNOUNCEMENT

Enroll Now for Academic Session 2017-18@ Coaching Fee of 2016-17
Classroom Contact Programs for Class V to XII
Target: JEE (Main+Advanced) | JEE (Main) | AIIMS/ NEET | Pre-foundation

Academic Benefits*
More than $\mathbf{8 0 0}$ Academic Hours \& $\mathbf{5 0 0}$ Classes
More than $\mathbf{1 5 0 0 0}$ Academic Questions
More than $\mathbf{1 0 0}$ Testing Hours

Financial Benefits*

$$
\begin{aligned}
& \text { Upto ₹ } \mathbf{3 0 0 0 0}+\text { Saving on } 1 \text { Year Course Fee } \\
& \mathbf{5 0 \%} \text { Concession on Admission Form Fee } \\
& \text { Upto } \mathbf{9 0 \%} \text { Scholarship on Course Fee }
\end{aligned}
$$

Test Cities for ResoFAST - 2017

Test Dates: 27.11.2016, 11.12.2016
Study Center Cities (29): Rajasthan: Kota, Jaipur, Jodhpur, Udaipur, Ajmer, Sikar; Bihar: Patna; Chattisgarh: Raipur; Delhi; Gujarat: Ahmedabad, Surat, Rajkot, Vadodara; Jharkhand: Ranchi; Madhya Pradesh: Bhopal, Gwalior, Indore, Jabalpur; Maharashtra: Aurangabad, Mumbai, Nagpur, Nanded, Nashik, Chandrapur; Odisha: Bhubaneswar; Uttar Pradesh: Agra, Allahabad, Lucknow; West Bengal: Kolkata;

Test Dates: 25.12.2016, 15.01.2017
Study Center Cities (27): Rajasthan: Kota, Jaipur, Jodhpur, Udaipur; Bihar: Patna; Chattisgarh: Raipur; Delhi; Gujarat: Ahmedabad, Surat, Rajkot, Vadodara; Jharkhand: Ranchi; Madhya Pradesh: Bhopal, Gwalior, Indore, Jabalpur; Maharashtra: Aurangabad, Mumbai, Nagpur; Nanded, Nashik, Chandrapur; Odisha: Bhubaneswar; Uttar Pradesh: Agra, Allahabad, Lucknow; West Bengal: Kolkata; Other Test Cities (74): Rajasthan: Aimer, Sikar, Sri Ganganagar, Alwar, Bhilwara, Bikaner, Bharatpur, Churu, Abu Road, Barmer; Bihar: Arah, Bhagalpur, Purnia, Samastipur, Gaya, Sitamari, Nalanda, Begu Sarai, Madhubani, Muzzafarpur; Delhi NCR: Noida, Gurgaon, Faridabad, Ghaziabad; Haryana: Bhiwani, Rewari, Hiser, Kaithal, Mahendargarh; Jharkhand: Jamshedpur, Bokaro, Dhanbad; J\&K: Jammu; Madhya Pradesh: Satna, Singhroli, Guna, Sahdol, Chattarpur; Maharashtra: Pune, Latur, Akola, Jalgaon, Sanghli; North East: Guwahati, Jalpaiguri; Odisha: Rourkela, Sambhalpur; Punjab: Amritsar, Jhalandhar, Bhatinda; Uttarkhand: Dehradun, Haldwani; Uttar Pradesh: Kanpur, Varanasi, Jhansi, Jaunpur, Bareily, Rai barely, Sultanpur, Saharanpur, Aligarh, Gorakhpur, Mathura, Rampur; West Bengal: Durgapura; Gujrat: Gandhinagar, Anand, Jamnagar, Vapi, Mehsana; Chattisgarh: Bilaspur, Bhillai; Himachal Pradesh: Mandi; Chandigarh;

> HOW TO GET ADMISSION PACKET: (a) Online: Visit www.resonance.ac.in, and buy ONLINE by paying through Credit/Debit Card \& Net Banking, | (b) In Person: Through Cash/ DD made in favour of 'Resonance', payable at Kota submit at any of the Resonance Study Centres. | (c) By Post/ Courier: Make a DD/Pay Order of required amount in favour of 'Resonance', payable at Kota and send it to at Kota only. | (d) COD (sms RESO Your City Name to 56677).

Resonance Eduventures Limited

CORPORATE OFFICE: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005
Reg. Office: J-2, Jawahar Nagar Main Road, Kota (Raj.) - 05 | Tel. No.: 0744-3012100, 3012222, 6635555 | CIN: U80302RJ2007PLCO24029
To know more: sms RESO at 56677 | e-mail: contact@resonance.ac.in
Toll Free: 18002585555 | Visit us: www.resonance.ac.in f \square (I)

1. For a gaseous reaction, $\mathrm{A}+\mathrm{B} \rightarrow$ products, the energy of activation was found to be $2.27 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 273 K . The ratio of the rate constant (k) to the frequency factor (A) at 273 K is
(A) 0.368
(B) 3.68
(C) 4.34
(D) 0.434

Ans. (A)
Sol. $\quad E_{a}=2.27 \mathrm{KJ} \mathrm{mol}^{-1}$
$=2.27 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}$.
According to Arrhenius equation
$K=A e^{\frac{-E_{a}}{R T}}$
$\frac{K}{A}=e^{\frac{-2.27 \times 10^{3}}{8.314 \times 273}}$
$\Rightarrow \frac{\mathrm{K}}{\mathrm{A}}=\mathrm{e}^{-1}$
$\Rightarrow \frac{\mathrm{K}}{\mathrm{A}}=\frac{1}{\mathrm{e}}$
$\Rightarrow \frac{\mathrm{K}}{\mathrm{A}}==.368$
Option A is Correct
2. In the case of dibromo derivatives of the following compound, the derivative having highest energy has the bromo substituents in positions

(A) 1, 2
(B) 2, 3
(C) 4,5
(D) 1,10

Ans. (D)

Sol.

3. The ionization energy of a certain element is $412 \mathrm{~kJ} \mathrm{~mol}^{-1}$. When the atoms of this element are in the first excited state, however, the ionization energy is only $126 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The region of the electromagnetic spectrum in which the wavelenght of light emitted in a transition from the first excited state to the ground state is
(A) Visible
(B) UV
(C) IR
(D) X-ray

Ans. (A)
Resconance

Sol．lonization energy $=412 \mathrm{~kJ} \mathrm{~mol}^{-}$

4．The reaction of an olefin with HBr can proceed by ionic as well as radical mechanism．The reaction in the presence of light takes place by radical mechanism，as
（A）The free energy of the reaction in radical mechanism in higher than in ionic mechanism
（B）Ionic mechanism requires a catalyst while radical mechanism does not
（C）In the presence of light the activation energy of the reaction is lower than that for ionic mechanism．
（D）A radical reaction has very low activation energy as compared to that for the corresponding ionic reaction．

Ans．（C）or（D）［Language of C and D is nearly similar］

Sol．Refer theory
5. The correct statement/s is/are :
I. Soap is excellent for cleaning, 100% broken down by bacteria in rivers and hence has no further environmental damaging repercussions.
II. Soap forms an insoluble precipitate/scum when hard water containing calcium and magnesium ion is used.
III. Soaps can be used for cleansing under acidic solutions.
(A) Only I
(B) Only II
(C) Only III
(D) I and III

Ans. (B)
Sol. The correct statement is (B) only II.
6. The kinetic data recorded at 278 K for the reaction
$\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is

Set No.	$\left[\mathbf{N H}_{4}{ }^{+}\right] / \mathbf{M}$	$\left[\mathrm{NO}_{2}{ }^{-}\right] / \mathbf{M}$	Rate of reaction/ Ms ${ }^{-1}$
$\mathbf{1 .}$	0.24	0.10	7.2×10^{-6}
$\mathbf{2 .}$	0.12	0.10	3.6×10^{-6}
$\mathbf{3 .}$	0.12	0.15	5.4×10^{-6}

The kinetic rate expression and the unit of rate constant (k) of the above reaction are respectively
(A) $\mathrm{k}\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NO}_{2}\right]$ and $\mathrm{M} \mathrm{s}^{-1}$
(B) $\mathrm{k}\left[\mathrm{NH}_{4}^{+}\right]$and s ${ }^{-1}$
(C) $\mathrm{k}\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]$and $\mathrm{M}^{-1} \mathrm{~s}^{-1}$
(D) $\mathrm{k}\left[\mathrm{NO}_{2}\right]$ and s ${ }^{-1}$

Ans. (C)
Sol. It can be solved using initial rate law method
\Rightarrow Rate $=\mathrm{K}\left[\mathrm{NH}_{4}^{+}\right]^{\mathrm{x}}\left[\mathrm{NO}_{2}^{-}\right]^{\mathrm{y}}$
From set (1)
$7.2 \times 10^{-6}=K[.24]^{x}[.10]^{y}$
From set (2)
$3.6 \times 10^{-6}=K[.12]^{x}[.10]^{y}$
(2)

Divide (1) \& (2)
$\frac{7.2 \times 10^{-6}}{3.6 \times 10^{-6}}=\mathrm{K} \frac{[.24]^{\mathrm{x}}[.10]^{\mathrm{y}}}{\mathrm{K}[.12]^{\mathrm{x}}[10]^{y}}$
(2) $=(2)^{x}$
$\Rightarrow \mathrm{x}=1 \Rightarrow$ order w. r. $\mathrm{tNH}_{4}^{+}=1$
From set (2)
$3.6 \times 10^{-6}=K[.12]^{x}[.10]^{y}$
From set (3)
$5.4 \times 10^{-6}=K[.12]^{\times}[.15]^{15}$
Divide (3 \& (4)

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
$\frac{3.6 \times 10^{-6}}{5.4 \times 10^{-6}}=\frac{\mathrm{K}[.12]^{\mathrm{x}}[.10]^{\mathrm{y}}}{\mathrm{K}[.12]^{\mathrm{x}}[.15]^{\mathrm{y}}}$
$\left(\frac{2}{3}\right)^{1}=(2 / 3)^{y} \Rightarrow y=1$
order w.r.t NO_{2}^{-}is also (1)
\Rightarrow Overall order $1+1=2$ i.e. $2^{\text {nd }}$ order
\Rightarrow unit of $\mathrm{K}=\left(\mathrm{mol} \mathrm{L}^{-1}\right)^{1-\mathrm{n}} \mathrm{s}^{-1} \Rightarrow\left(\mathrm{M}^{-1} \mathrm{sec}^{-1}\right.$
$\Rightarrow \mathrm{R}=\mathrm{K}\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]$
Ans. (C) Option
7. Which of the following statements is not true for Ce^{3+} and Yb^{3+} ?
(A) Both absorb in UV region
(B) Both show $\mathrm{f}-\mathrm{f}$ transition
(C) Both show $4 f$ to $5 d$ transition
(D) Both ions are colorless

Ans. (B)
Sol. Both Ce^{3+} and Yb^{3+} are colored ions but donot show f-f transition.
8. Complete catalytic hydrogenation of naphthalene gives decalin $\left(\mathrm{C}_{10} \mathrm{H}_{18}\right)$. The number of isomers of decalin formed and the total number of isomers of decalin possible are respectively
(A) 1,2
(B) 2,2
(C) 2,4
(D) 3,4

Ans. (A)
Sol.

9．The mass of argon adsorbed per unit mass of carbon surface is plotted against pressure．Which of the following plots is correct if x and m represent the masses of argon and carbon respectively ？
\qquad ．represents extrapolated data）
（A）

（B）

（C）

（D）

Ans．（D）
Sol．Correct option is D．
i．e．

10．In a process n－propyl chloride is reacted with sodium butanoate in an aqueous medium．After the reaction diethyl ether is added and the solution is shaken．The two layers are separated．The incorrect statement with respect to this procedure is
（A）The reaction gives a solid product which precipitates in the aqueous solution．
（B）The reaction takes place in the aqueous medium．
（C）The product is extracted in diethyl ether and the organic layer is the upper layer．
（D）The salt formed in the reaction remains in aqueous medium．
Ans．（A）
Sol．n－propylchloride + sodium butanoate \rightarrow Ester

11．Which of the following statements about ammonium cerium（IV）nitrate，$\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]$ is false？
（A） $\mathrm{NO}_{3}{ }^{-}$acts as a monodentate ligand．
（B）The Ce atom has a coordination number of 12.
（C）The shape of the complex ion is icosahedron．
（D）The solution is used as oxidizing agent．
Ans．（A）
Sol．$\quad\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right] \longrightarrow 2 \mathrm{NH}_{4}^{+}+\left[\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}\right]^{-2}$
Oxidation number of Ce is +4

Corporate Office ：CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Raj．）－ 324005

C.N. $\rightarrow 12$
used as O.A. in organic synthesis.
So, statement (1) is incorrect.
Correct option is A.
12. The correct order of the magnitude of bondenergy ($\mathrm{kJ} / \mathrm{mol}$) of the central $\mathrm{C}-\mathrm{C}$ bond in the following compounds is:
(i) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(j) $\mathrm{Me}_{3} \mathrm{C}-\mathrm{CPh}_{3}$
(k) $\mathrm{MeCO}-\mathrm{CO}-\mathrm{Me}$
(I) $\mathrm{CH} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
(A) $\mathrm{k}>\mathrm{i}>\mathrm{l}>\mathrm{j}$
(B) j $>\mathrm{k}>$ I $>$ i
(C) i>j>k $>$ I
(D) l $>$ i $>\mathrm{k}>$ j

Ans. (D)
13. Which one of the following information about the compounds is correct ?

Compounds	Oxidation state of \mathbf{P}	No. of \mathbf{P}-OH bonds	No. of $\mathbf{P}-\mathbf{H}$ bonds	No. of $\mathbf{P}=\mathbf{O}$ bonds
$\left[\right.$ II $\mathrm{H}_{3} \mathrm{PO}_{2}$ Hypophosphorous acid	$1+$	2	1	0
$\left[\right.$ II] $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$ pyropophosphorous acid	$3+$	2	2	2
[III] $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$ Hypophosphoric acid	$4+$	2	2	2
$[\mathrm{IV}] \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ pyrophosphoric acid	$5+$	3	1	4

(A) I
(B) III
(C) IV
(D) II

Ans. (D)

Sol.
(I)

Oxidation state of $\mathrm{P}=+1$
No. of $\mathrm{P}-\mathrm{OH}$ bond $=1$
No. of $\mathrm{P}-\mathrm{H}$ bond $=2$
No. of $\mathrm{P}=\mathrm{O}$ bond $=0$
$\Rightarrow \quad$ option (A) is incorrect.

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
(II)

Oxidation state of $P=+3$
No. of $\mathrm{P}-\mathrm{OH}$ bond $=2$
No. of $\mathrm{P}-\mathrm{H}$ bond $=2$
No. of $P=O$ bond $=2 \quad \Rightarrow \quad$ correct option is (D) II.
14. The best method of preparation of 2-benzyloxynaphthalene is a base catalysed reaction of :
(A) benzyl chloride and 1-naphthol
(B) 1-chloromethylnapthalene and phenol
(C) 1-chloronaphtalene and benzyl alcohol
(D) benzyl alcohol and 1-naphthol

Ans. (Bonus)

Sol. Bonus [None of the option form 2-benzyloxynapthalene.]
15. The pair that is isostructural (i.e. having the same shape and hybridization) is
(A) NF_{3} and BF_{3}
(B) BF_{4}^{-}and NH_{4}^{+}
(C) BCl_{3} and BrCl_{3}
(D) NH_{3} and $\mathrm{NO}_{3}{ }^{-}$

Ans. (B)
Sol. Correct option is (B) BF_{4}^{Θ} \& NH_{4}^{\oplus}
16. A group which departs from the substrate in a nucleophilic substitution reaction is called a leaving group. The ease of departure is determined by the acidity of the conjugate acid of the leaving group ; higher the acidity better is the leaving group. The correct order of the reactivity of the following compounds in a given nucleophilic reaction is :
(A) $\mathrm{R}-\mathrm{Cl}>\mathrm{R}-\mathrm{OCOCH}_{3}>\mathrm{R}-\mathrm{OSO}_{2} \mathrm{CH}_{3}>\mathrm{RI}$
(B) $\mathrm{R}-\mathrm{OSO}_{2} \mathrm{CH}_{3}>\mathrm{R}-\mathrm{Cl}>\mathrm{R}-\mathrm{OCOCH}_{3}>\mathrm{ROH}$
(C) R-I $>\mathrm{RNH}_{2}>\mathrm{R}-\mathrm{OCOCH}_{3}>\mathrm{R}-\mathrm{OSO}_{2} \mathrm{CH}_{3}$
(D) $\mathrm{R}-\mathrm{Br}>\mathrm{R}-\mathrm{OSO}_{2} \mathrm{CH}_{3}>\mathrm{R}-\mathrm{OCOCH}_{3}>\mathrm{ROCH}_{3}$

Ans. (D)

Sol.

17. If a dilute solution of aqueous NH_{3} is saturated with $\mathrm{H}_{2} \mathrm{~S}$ then the product formed is :
(A) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
(B) $\mathrm{NH}_{4} \mathrm{HS}$
(C) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{\mathrm{x}}$
(D) $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{S}$

Ans. (B)
Sol. Dilute solution of aqueous NH_{3} saturated with $\mathrm{H}_{2} \mathrm{~S}$, then the product formed is $(B) \mathrm{NH}_{4} \mathrm{HS}$.
18. Three Faradays of electricity are passed through aqueous solutions of $\mathrm{AgNO}_{3}, \mathrm{NiSO}_{4}$ and CrCl_{3} kept in three vessels using inert electrodes. The ratio (in moles) in which the metals Ag, Ni and Cr are deposited is:
(A) $1: 2: 3$
(B) $3: 2: 1$
(C) $6: 3: 2$
(D) $2: 3: 6$

Ans. (C)
Sol. $\quad \mathrm{AgNO}_{3}, \mathrm{NiSO}_{4}, \mathrm{CrCl}_{3}$
$\mathrm{AgNO}_{3} \rightarrow \mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-}$
\downarrow
$\mathrm{Ag} \quad$ (requires 1 mole electron i.e. 1 Farad charge.)
$\mathrm{NiSO}_{4} \rightarrow \mathrm{Ni}^{2+}+\mathrm{SO}_{4}^{2-}$
\downarrow
$\mathrm{Ni} \quad$ (requires 2 mole electron i.e. 2 Farad charge.)
$\mathrm{CrCl}_{3} \rightarrow \mathrm{Cr}^{3+}+3 \mathrm{Cl}^{-}$
\downarrow
$\mathrm{Cr} \quad$ (requires 3 mole electron i.e. 3 Farad charge.)
But the charge passed is 3 F .
1F charge deposit 1 mole Ag
3 F charge deposit 3 mole Ag
2 F charge deposit 1 mole Nl^{2+}
1F charge deposit $\frac{1}{2}$ mole Ni^{2+}
3 F charge deposit $\frac{3}{2}$ mole Ni^{2+}
3F charge deposit 1 mole $\left.\mathrm{Cr}^{3+}\right\}$....(3)
$\Rightarrow \quad \mathrm{Ag}: \mathrm{Ni}: \mathrm{Cr}=3: \frac{3}{2}: 1 \Rightarrow \quad 6: 3: 2$
Correct option is (C).
19. Nepetalactone (X) is isolated as an oil from Catnip.

The number of chiral carbon atoms and the amount of KOH consumed by 83 mg of Nepetalactone are respectively
(A) $3,50 \mathrm{mg}$
(B) $2,56 \mathrm{mg}$
(C) $3,56 \mathrm{mg}$
(D) $3,28 \mathrm{mg}$

Ans. (D)

Sol.

KOH will attack at ester only.
20. Number of $P-S$ single bonds and $P-S$ double bonds $(P=S)$ in $P_{4} S_{10}$ are respectively
(A) 10, 6
(B) 16,0
(C) 14,2
(D) 12, 4

Ans. (D)

Sol.

Number of single P-S bond $=12$
Number of double P-S bond $=4$
Correct option is (D)
21. If the solubility product of iron(III) hydroxide is 1.8×10^{-37}, the pH of a saturated solution of iron(III) hydroxide in distilled water is close to
(A) 4
(B) 5
(C) 7
(D) 9

Ans. (C)
22. An alkyl halide (X) on reaction with ethanolic sodium hydroxide forms an alkene (Y) which on further reaction with HBr gives the same alkyl halide. The alkene (Y) on reaction with $\mathrm{HBr} /$ peroxide followed by reaction with Mg metal followed by reaction with HCN produces an aldehyde (Z). Z is :
(A)

(B)

(C)

(D)

Ans. (B \& C)
Sol.

23. HClO_{4} is stronger acid than HClO . The correct statement is :
(A) ClO_{4}^{-}ion is more stabilized than ClO^{-}
(B) ClO_{4}^{-}ion has higher hydration energy than ClO^{-}
(C) HClO_{4} is better solvated in water than HClO
(D) In $\mathrm{HClO}_{4}, \mathrm{H}$ is attached to CI , while in HClO it is attached to O .

Ans. (A)
24. For an elementary rearrangement reaction $A \rightleftharpoons P$, the following data were recorded at 303 K , when $[P]_{0}=0$.

Set No.	$[\mathbf{A}]_{0} / \mathbf{m o l ~ L}^{-1}$	Rate of conversation of $\mathbf{A} / \mathbf{m o l ~ L}^{-1} \mathbf{~ m i n}^{-1}$
$\mathbf{1}$	0.340	0.100
$\mathbf{2}$	0.170	0.050
$\mathbf{3}$	0.085	0.025

If the equilibrium constant of the reaction is 1.12 at 303 K , the rate constant for the reaction $\mathrm{P} \rightarrow \mathrm{A}$ is :
(A) $0.263 \mathrm{~min}^{-1}$
(B) $0.294 \mathrm{~min}^{-1}$
(C) $0.526 \mathrm{~min}^{-1}$
(D) $0.588 \mathrm{~min}^{-1}$

Ans. (A)
Sol. $\quad A \underset{K_{b}}{\stackrel{K_{f}}{\rightleftharpoons}} P$
for forward reaction let $-\frac{d A}{d t}=K_{f}(A)^{x}$
from experimental data,

$$
\begin{array}{ll}
0.1=K_{f}(0.34)^{x} \\
0.05=K_{f}(0.17)^{x}
\end{array} \quad \begin{aligned}
& 2=(2)^{x} \\
& \text { so } x=1
\end{aligned}
$$

so $\quad K_{f}=\frac{0.1}{0.34}$
Now $\quad \mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}=1.12=\frac{0.1}{0.34 \times \mathrm{K}_{\mathrm{b}}}$
so $\mathrm{K}_{\mathrm{b}}=0.263 \mathrm{~min}^{-1}$.

Ans. (A)
25. Compound P on treatment with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ (diazomethane) produces compound Q . Compound Q on reaction with HI produces two alkyl iodides R and S . Alkyl iodide S with higher number of carbon atoms on reaction with KCN followed by hydrolysis gives 3-methylbutanoic acid. The compound P is :
(A) 2-butanol
(B) 1-butanol
(C) 2-methyl-2-propanol
(D) 2-methyl-1-propanol

Ans. (D)

Sol.

26. I_{2} reacts with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ to give $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ and NaI . The products of reaction of Cl_{2} with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ are
(A) $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+\mathrm{NaCl}$
(B) $\mathrm{NaHSO}_{4}+\mathrm{HCl}$
(C) $\mathrm{NaHSO}_{3}+\mathrm{HCl}$
(D) $\mathrm{NaHSO}_{3}+\mathrm{NaCl}$

Ans. (B)
27. The standard potentials $\left(E^{\circ}\right)$ of $\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}$ and $\mathrm{MnO}_{2} / \mathrm{Mn}^{2+}$ half cells in acidic medium are 1.51 V and 1.23 V respectively at 298 K . The standard potential of $\mathrm{MnO}_{4}^{-} / \mathrm{MnO}_{2}$ half-cell in acidic medium at the same temperature is :
(A) 5.09 V
(B) 1.70 V
(C) 0.28 V
(D) 3.34 V

Ans. (B)
Sol. $\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{+2} \rightarrow 1.51 \mathrm{~V}$
$\mathrm{MnO}_{2} / \mathrm{Mn}^{+2} \rightarrow 1.23 \mathrm{~V}$
$\left[3 \mathrm{e}^{-}+4 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\right]$
$5 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}, \mathrm{E}^{\circ}{ }_{1}=1.5 \mathrm{eV}$.
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Mn}^{+2} \rightarrow \mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}, \mathrm{E}_{2}^{\circ}=-1.23 \mathrm{~V}$
$3 \mathrm{e}^{-}+4 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \mathrm{E}^{\circ}=$?
As $\Delta \mathrm{G}^{\circ}=-\mathrm{nF} \mathrm{E}^{\mathrm{o}}$ Cell
$-3 \times \mathrm{F} \times \mathrm{E}_{3}^{\circ}=-5 \times \mathrm{F} \times 1.51+2 \times \mathrm{F}+\times 1.23$
$-3 \mathrm{E}_{3}{ }^{\circ}=-7.55+2.46$
$-3 F_{3}{ }^{\circ}=-5.09$
$\Rightarrow E_{3}{ }^{\circ}=\frac{5.09}{3} \Rightarrow E_{3}{ }^{\circ}=1.699=1.70 \mathrm{~V}$
Correct option is (B) 1.70 V
28. Aspartame (X) is an artificial sweetening agent and is 200 times sweeter than sugar. It is an ester of the dipeptide of :

(A) alanine and phyenylalanine
(B) aspartic acid and alanine
(C) phenylalanine and glycine
(D) aspartic acid and phenylalanine

Ans. (D)
29. Which one of the following reactions is correct ?
(A) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]+2 \mathrm{NO} \rightarrow\left[\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{NO})_{2}\right]+3 \mathrm{CO}$
(B) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]+2 \mathrm{NO} \rightarrow\left[\mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{NO})_{2}\right]+2 \mathrm{CO}$
(C) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]+3 \mathrm{NO} \rightarrow\left[\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{NO})_{3}\right]+3 \mathrm{CO}$
(D) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]+3 \mathrm{NO} \rightarrow\left[\mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{NO})_{3}\right]+2 \mathrm{CO}$

Ans. (A)
30. Standard molar enthalpy of formation of $\mathrm{CO}_{2}(\mathrm{~g})$ is equal to
(A) Zero
(B) The standard molar enthalpy of combustion of carbon (graphite)
(C) The standard molar enthalpy of combustion of $\mathrm{C}(\mathrm{g})$
(D) The standard molar enthalpy of combustion of $\mathrm{CO}(\mathrm{g})$

Ans. (B)
31. The reaction of 1-phenylpropane with limited amount of chlorine in the presence of light gives mainly.
(A) 4-chloropropylbenzene
(B) 1-chloro-1-phenylpropane
(C) 3-chloro-1-phenylpropane
(D) 2-chloro-1-phenylpropane

Ans. (B)

Sol.

32. An ionic solid Lal_{2} shows electrical conduction due to presence of :
(A) La^{2+} and 21^{-}
(B) $\mathrm{La}^{3+}, 21^{-}$and e^{-}
(C) $\mathrm{La}^{2+}, \mathrm{I}_{2}$ and $2 \mathrm{e}^{-}$
(D) $\mathrm{La}^{3+}, \mathrm{I}_{2}$ and $3 \mathrm{e}^{-}$

Ans. (B)
33. The kinetic energy of an electron that has a wavelength of 10 nm is
(A) $2.4 \times 10^{-21} \mathrm{~J}$
(B) $4.8 \times 10^{-21} \mathrm{~J}$
(C) $2.4 \times 10^{-29} \mathrm{~J}$
(D) $4.8 \times 10^{-29} \mathrm{~J}$

Ans. (A)

Sol. $\quad \lambda=\left(\frac{150}{v}\right)^{1 / 2} \AA$
$100=\left(\frac{150}{v}\right)^{1 / 2} \Rightarrow v=\frac{150}{10000} \quad \Rightarrow v=15 \times 10^{-3}$
$\Rightarrow K . E=15 \times 10^{-3} \mathrm{ev} \Rightarrow K . E=15 \times 10^{-3} \times 1.6 \times 10^{-19} \mathrm{~J}$
$=24 \times 10^{-22} \mathrm{~J}=2.4 \times 10^{-21} \mathrm{~J}$
Correct option is (A)
34. Which of the following compounds contain 3-centered 2 -electron bonding ?
(i) $\left[\mathrm{BeF}_{2}\right]_{n}$
(ii) $\left[\mathrm{Be}\left(\mathrm{CH}_{3}\right)_{3}\right]_{n}$
(iii) $\left[\mathrm{BeCl}_{2}\right]_{n}$
(iv) $\left[\mathrm{BeH}_{2}\right]_{n}$
(A) (i) and (ii)
(B) (ii) and (iii)
(C) (ii) and (iv)
(D) (iii) and (iv)

Ans. (C)
35. 3-Methylpentane on monochlorination gives four possible products. The reaction follows free radical mechanism. The relative reactivities for replacement of -H are $3^{\circ}: 2^{\circ}: 1^{\circ}=6: 4: 1$.

Relative amounts of A, B, C and D formed are
(A) $6 / 31,16 / 31,6 / 31,3 / 31$
(B) $16 / 31,6 / 31,6 / 31,3 / 31$
(C) $6 / 31,16 / 31,3 / 31,6 / 31$
(D) $6 / 31,3 / 31,6 / 31,16 / 31$

Ans. (C)
36. White phosphorous on reaction with NaOH gives PH_{3} and
(A) $\mathrm{Na}_{2} \mathrm{HPO}_{3}$
(B) $\mathrm{NaH}_{2} \mathrm{PO}_{2}$
(C) $\mathrm{NaH}_{2} \mathrm{PO}_{3}$
(D) $\mathrm{Na}_{3} \mathrm{PO}_{4}$

Ans. (B)
37. Given the E_{0} values for the half reactions :
$\mathrm{Sn}^{4+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}, 0.15 \mathrm{~V}$
$2 \mathrm{Hg}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Hg}_{2}^{2+}, 0.92 \mathrm{~V}$
$\mathrm{PbO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}^{2+}+2 \mathrm{H}_{2} \mathrm{O}, 1.45 \mathrm{~V}$
Which of the following statements is true?
(A) Sn^{2+} is a stronger oxidizing agent than Pb^{4+}
(B) Sn^{2+} is a stronger reducing agent than Hg_{2}^{2+}
(C) Hg^{2+} is a stronger oxidizing agent than Pb^{4+}
(D) Pb^{2+} is a stronger reducing agent than Sn^{2+}

Ans. (B)
Sol. S.R.P $\rightarrow \mathrm{Pb}^{+4}>\mathrm{Hg}^{+2}>\mathrm{Sn}^{+4}$

$$
1.45 \mathrm{~V} \quad 0.92 \mathrm{~V} \quad 0.15 \mathrm{~V}
$$

S.O.P $\quad \mathrm{Sn}^{+2} \rightarrow-0.15 \mathrm{~V}$. Maximum

$$
\mathrm{Hg}_{2}{ }^{+2} \rightarrow-0.92 \mathrm{~V}
$$

$$
\mathrm{Pb}^{+2} \rightarrow-1.45 \mathrm{~V}
$$

$\Rightarrow \mathrm{Sn}^{+2}$ is a strong reducing agent than $\mathrm{Hg}_{2}{ }^{+2}$.
Correct answer is option (B).
38. For the conversion $\mathrm{CCl}_{4}(\ell) \rightarrow \mathrm{CCl}_{4}(\mathrm{~g})$ at 1 bar and 350 K , the correct set of thermodynamic parameters is (Boiling point of CCl_{4} is $77^{\circ} \mathrm{C}$)
(A) $\Delta G=0, \Delta S=+v e$
(B) $\Delta G=0, \Delta S=-v e$
(C) $\Delta G=-v e, \Delta S=0$
(D) $\Delta G=-\mathrm{ve}, \Delta \mathrm{S}=+\mathrm{ve}$

Ans. (A)
39. How many isomers are possible for complex $\left[\mathrm{Co}(\mathrm{ox})_{2} \mathrm{Cl}_{2}\right]^{+}$?
(A) 1
(B) 3
(C) 2
(D) 4

Ans. (B)
40. The compound that will not react with silver perchlorate under normal condition is :
(A) 3-bromocyclopropene
(B) tetraethyl ammonium chloride
(C) tetramethylammonium hydroxide
(D) polyvinyl chloride

Ans. (D)
41. The conductivity of 0.10 M KCl solution at 298 K is $1.29 \times 10^{-2} \mathrm{~S} \mathrm{~cm}^{-1}$. The resistance of this solution is found to be 28.44Ω. Using the same cell, the resistance of $0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution is found to be 28.50Ω. The molar conductivity of $\mathrm{NH}_{4} \mathrm{Cl}$ solution in $\mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ is :
(A) 0.130
(B) 13
(C) 130
(D) 1300

Ans. (C)
Sol. $\quad C=10 M(K C l)$

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
$\mathrm{K}=1.29 \times 10^{-2} \mathrm{~S} \mathrm{~cm}^{-1}$
$R=28.44 \Omega$
$\mathrm{K}=\frac{1}{\mathrm{R}} \times \frac{\ell}{\mathrm{A}} \Rightarrow \frac{\ell}{\mathrm{A}}=\mathrm{K} \times \mathrm{R} \Rightarrow \frac{\ell}{\mathrm{A}}=1.29 \times 10^{-2} \times 28.44$
For II Case ：
$K=1.28 \times 10^{-2} \mathrm{~S} \mathrm{~cm}^{-1}$
$\wedge_{\mathrm{NH}_{4} \mathrm{Cl}}=\frac{\mathrm{K} \times 1000}{\mathrm{C}}=1.28 \times 10^{2}=128=130$
Correct option is（C） 130

42．Consider a compound $C s X Y_{2}$ where X and Y are halogens．Which of the following statement／s is／are correct？
（i） X and Y have different oxidation states．
（ii）For Y with lower atomic number than X, X can assume oxidation states higher than normal．
（iii）Such compounds exist because Cs^{+}has a high charge to size ratio．
（A）Only（i）
（B）（i）and（ii）
（C）Only（ii）
（D）（i）and（iii）

Ans．（B）

43．Match the compounds given in list I with their characteristic reactions in list II

List－I（Compound）		List－II（Reaction）			
1	Tert－butyl amine	a	Liberation of ammonia on heating with aq． NaOH		
2	2－methyl－2－pentanol	b	Effervescence with NaHCO_{3}		
3	$2,4,6$－trinitrophenol	c	Foul smell with chloroform in alkaline condition		
4	Cyclohexane carboxamide	d	Formation of an water insoluble compound on treatment with conc． HCl and ZnCl_{2}		

（A）1－a，2－c，3－d，4－b
（B）1－c，2－d，3－b，4－a
（C）1－a，2－b，3－c，4－d
（D）1－d，2－a，3－b，4－c

Ans．（B）

44．Which of the following statements is not correct regarding the galvanic cells ？
（A）Oxidation occurs at the anode．
（B）lons carry current inside the cell．
（C）Electrons flow in the external circuit from cathode to anode．
（D）When the cell potential is positive，the cell reaction is spontaneous．

Ans（C）

45. L-Fucose with the following planar representation is a sugar component of the determinants of the A, B, O blood group typing

The open chain structure of L-Fucose can be represented as
(A)

(B)

(C)

(D)

Ans. (C)

Sol.

46. In ammonia the bond angle is $107^{\circ} 48^{\prime}$ while in SbH_{3} the bond angle is about $91^{\circ} 18^{\prime}$. The correct explanation among the following is/are
(A) The orbitals of Sb used for the formation of $\mathrm{Sb}-\mathrm{H}$ bond are almost pure p -orbitals.
(B) Sb has larger size compared to N .
(C) Sb has more metallic character than N .
(D) All the statements are correct.

Ans. (A)
47. Equal masses of ethane and hydrogen gas are present in a container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by ethane gas is :
(A) $1 / 2$
(B) $1 / 16$
(C) $15 / 16$
(D) $1 / 8$

Ans. (B)
48. The volume of nitrogen evolved on complete reaction of 9 g of ethylamine with a mixture of NaNO_{2} and HCl at $273^{\circ} \mathrm{C}$ and 1 atm pressure is :
(A) $11.2 \mathrm{dm}^{3}$
(B) $5.6 \mathrm{~cm}^{3}$
(C) $4.48 \mathrm{dm}^{3}$
(D) $22.4 \mathrm{~cm}^{3}$

Ans. (\mathbf{C}^{*}) It is the best options assuming 273 K . Otherwise it is bonus.
49. Compound ' X ' in the following reaction is

(A)

(B)

(C)

(D)

Ans. (C)

Sol.

50. A toxic element is to be removed from drinking water by adsorption on activated charcoal. At low concentrations, the rate constant for adsorption is $1.8 \times 10^{-5} \mathrm{~s}^{-1}$. The time required to reduce the concentration of the toxic element to 10% of its initial concentration is
(A) $1.28 \times 10^{5} \mathrm{~s}$
(B) $5.85 \times 10^{3} \mathrm{~s}$
(C) $1.28 \times 10^{6} \mathrm{~s}$
(D) cannot be calculated from the given data.

Ans. (A)
51. Assuming that Hund's rule is violated by the diatomic molecule B_{2}, its bond order and magnetic nature will be respectively
(A) 1, diamagnetic
(B) 1, paramagnetic
(C) 2, diamagnetic
(D) 2, paramagnetic

Ans. (A)
52. In a cubic crystal structure, divalent metal-ion is located at the body-centered position, the smaller tetravalent metal ions are located at each corner and the O^{2-} ions are located half way along each of the edges of the cube. The number of nearest neighbors for oxygen is
(A) 4
(B) 6
(C) 2
(D) 8

Ans. (C)
53. Organic compounds sometimes adjust their electronic as well as steric structures to attain stability. Among the following, the compound having highest dipole moment is :
(A)

(B)

(C)

(D)

Ans. (D)

Sol.

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
54. Cyanide ion is a very good complexing agent and also functions as a reducing agent. Hence may cyanide complexes of metals are known. Addition of an aqueous solution of KCN to a solution of copper sulphate yields a white precipitate which is soluble in excess of aqueous KCN to form the complex :
(A) $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{1-}$
(B) $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-}$
(C) $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$
(D) $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{4-}$

Ans. (C)
55. When a certain metal was irradiated with light of frequency $3.2 \times 10^{16} \mathrm{~Hz}$, the photoelectrons emitted had twice the kinetic energy as did the photoelectrons emitted when the same metal was irradiated with light of frequency $2.0 \times 10^{16} \mathrm{~Hz}$. The v_{0} of the metal is :
(A) $2.4 \times 10^{16} \mathrm{~Hz}$
(B) $8.0 \times 10^{16} \mathrm{~Hz}$
(C) $8.0 \times 10^{15} \mathrm{~Hz}$
(D) $7.2 \times 10^{16} \mathrm{~Hz}$

Ans. (C)
Sol. $h \times 3.2 \times 10^{-6}=h v_{0}+K . E_{1}$
$h \times 2 \times 10^{16}=h v_{0}+K . E_{2}$
$\mathrm{K} . \mathrm{E}_{1}=2 \times \mathrm{K} . \mathrm{E}_{2}$.
$h \times 3.2 \times 10^{16}=h v_{0}+2 K . E_{2}$
$h \times 2 \times 10^{16}=h v_{0}+K . E_{2}$
$-\quad-\quad-$
$1.2 \times 10^{16} \times h=K . E_{2}$
$\Rightarrow \quad \mathrm{K} \times 2 \times 10^{16}=\mathrm{h} \mathrm{v}_{0}+1.2 \times 10^{16} \times \mathrm{h} \Rightarrow \mathrm{v}_{0}=0.8 \times 10^{16} \Rightarrow \mathrm{v}_{0}=8 \times 10^{15} \mathrm{HZ}$
56. The major product ' S ' of the following reaction sequence is :

(A)

(B)

(C)

(D)

Ans. (B)

Sol.

57. $\quad 1.250 \mathrm{~g}$ of metal carbonate $\left(\mathrm{MCO}_{3}\right)$ was treated with 500 mL of 0.1 M HCl solution. The unreacted HCl required 50.0 mL of 0.500 M NaOH solution for neutralization. Identify the metal M
(A) Mg
(B) Ca
(C) Sr
(D) Ba

Ans. (B)
Resonance®
Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005
Educating for better tomorrow

Sol．For HCl
$\mathrm{M}_{1}=0.1 \mathrm{M}$
$\mathrm{V}_{1}=500 \mathrm{ml}$
$\mathrm{n}=\mathrm{M}_{1} \mathrm{~V}_{1}=500 \times \frac{0.1}{10}=50$ millimoles
for NaOH
$\mathrm{M}_{2}=0.5 \mathrm{M}$
$\mathrm{V}_{2}=50 \mathrm{ml}$
$\mathrm{n}=\mathrm{M}_{2} \mathrm{~V}_{2}=0.5 \times 50=25$ millimoles
\Rightarrow millimoles of carbonate $=25$ millimoles
\Rightarrow millimoles of $\mathrm{CaCO}_{3}=12.5$
Correct option is（ B ）．

58．An electron beam can undergo diffraction by crystals which proves the wave nature of electrons． The potential required for a beam of electrons to be accelerated so that its wavelength becomes equal to 0.154 nm is ：
（A） 63.5 V
（B） 31.75 V
（C） 635 V
（D） 127 V

Ans．（A）
Sol．$\lambda=1.54 \AA$
$\lambda=\frac{12.27}{\mathrm{~V}^{1 / 2}}$
$\mathrm{V}=\frac{12.27 \times 12.27}{1.54 \times 1.54}=63.48 \mathrm{~V}$
Correct option is (A) ．

59．A biodegradable alternating copolymer of L－alanine and glycolic acid $\left(\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{COOH}\right)$ is ：
（A）

（B）

（C）

（D）

Ans．（A）

Sol．

60．In which of the following complexes the metal ion has the lowest ionic radius ？
（A）$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
（B）$\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
（C）$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
（D）$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Ans．（B）
61. In cold climate, the water in a radiator of car gets frozen causing damage to the radiator. Ethylene glycol is used as an antifreezing agent. The amount of ethylene glycol that should be added to 5 kg of water to prevent it from freezing at $-7^{\circ} \mathrm{C}$ is :
(Given : K_{f} for water $=1.86 \mathrm{~K} \mathrm{~mol}^{-1} \mathrm{~kg}$; Molar mass of ethylene gycol $=62 \mathrm{~g} \mathrm{~mol}^{-1}$)
(A) 1165 g
(B) 46.7 g
(C) 116.7 g
(D) 93.4 g

Ans. (A)
Sol. $\Delta T_{f}=K_{b} \times$ molality
$7=1.86 \times$ molality
molality $=\frac{7}{1.86}=3.76=\left(\frac{\text { mass in } 1 \mathrm{~kg} \text { solvent }}{62}\right)$
mass in 1 kg water $=3.76 \times 62 \mathrm{gm}=233.33 \mathrm{gm}$
so mass to be added in 5 kg water $=1166$ gram
Correct option is (A).
62. The ratio of the energy of the electron in ground state of hydrogen atom to that of the electron in the first excited state of Be^{3+} is
(A) $1: 4$
(B) $1: 8$
(C) $1: 16$
(D) $4: 1$

Ans. (A)
Sol. Energy of ground state of hydrogen atom $=-13.6 \times 1 \mathrm{eV}$
Energy of electron in first excited state of $\mathrm{Be}^{+3}=-54.4 \mathrm{eV}$.
\Rightarrow ratio $=1: 4$
63. Water insoluble, but organic solvent soluble, dye is dissolved in three organic solvents and taken in three separating funnels, a b, and c. To each solution, water is added, shaken, and kept undisturbed. The solvents in separating funnels a, b and c from the following figures are respectively :

a

b

C
(A) a : EtOH; b: $\mathrm{CCl}_{4} ; \mathrm{c}: \mathrm{EtOAc}$
(B) a: $\mathrm{CCl}_{4} ;$ b: $\mathrm{EtOH} ; \mathrm{c}: \mathrm{EtOAc}$
(C) a: EtOAc; b: $\mathrm{CCl}_{4} ; \mathrm{c}: \mathrm{EtOH}$
(D) a: $\mathrm{CCl}_{4} ; \mathrm{b}: \mathrm{EtOAc} ; \mathrm{c}: \mathrm{EtOH}$

Ans. (B)
64. P, Q, R and S are four metals whose typical reactions are given below :
(I) Only Q and R react with dilute HCl to give H_{2} gas.
(II) When Q is added to a solution containing the ions of the other metals, metallic P, R and S are formed.
(III) P reacts with concentrated HNO_{3} but S does not

The correct order of their reducing character is:
(A) $\mathrm{S}<\mathrm{P}<\mathrm{R}<\mathrm{Q}$
(B) $\mathrm{S}<\mathrm{R}<\mathrm{P}<\mathrm{Q}$
(C) R $<$ Q $<$ P $<$ S
(D) Q $<$ P $<$ S $<$ R

Ans. (A)
65. The electrons identified by quantum number n and I, (i) $n=4, I=1$, (ii) $n=4, I=0$, (iii) $n=3$, $I=2$, (iv) $n=3, I=1$ can be placed in order of increasing energy from lowest to highest as
(A) (iv) < (ii) < (iii) < (i)
(B) (ii) < (iv) < (i) < (iii)
(C) (i) < (iii) < (ii) < (iv)
(D) (iii) < (i) < (iv) < (ii)

Ans. (A)
66. Spodoptol, a sex attractant, produced by a female fall armyworm moth, can be prepared as follows. The structure of Spodoptol is (pK_{a} : terminal alkynes ~ 25, alcohols ~ 17)

(A) $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{O}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{7}-\mathrm{HC}=\mathrm{CH}_{2}$
(B)

(C)

(D) $\mathrm{HO}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{12}-\mathrm{CH}_{3}$

Ans. (B)
67. Passing $\mathrm{H}_{2} \mathrm{~S}$ gas into a mixture of $\mathrm{Mn}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}$ and Hg^{2+} in an acidified aqueous solution precipitates.
(A) CuS and HgS
(B) MnS and CuS
(C) MnS and NiS
(D) NiS and HgS

Ans. (A)
68. Battery acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ has density $1.285 \mathrm{~g} \mathrm{~cm}^{-3} .10 .0 \mathrm{~cm}^{3}$ of this acid is diluted to $1 \mathrm{~L} .25 .0 \mathrm{~cm}^{3}$ of this diluted solution requires $25.0 \mathrm{~cm}^{3}$ of 0.1 N sodium hydroxide solution for neutralization. The percentage of sulphuric acid by mass in the battery acid is :
(A) 98
(B) 38
(C) 19
(D) 49

Ans. (B)
Sol. Let the normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in battery acid be = 'x' N
then number of mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $10 \mathrm{~cm}^{3}$ of acid $=(10 \mathrm{x})$
After dilution to 1 L only $25 \mathrm{~cm}^{3}$ of this is taken so number of mol in $25 \mathrm{~cm}^{3}$ of diluted acid

$$
=\left(\frac{10 x}{1000} \times 25\right)=\left(\frac{x}{4}\right) \mathrm{mol}
$$

So number of mol of $\mathrm{NaOH}=0.1 \times 25=2.5$

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)- 324005

So $\quad \frac{x}{4}=2.5 \quad \Rightarrow \quad x=10 \mathrm{~N}$
So molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in battery acid $=5 \mathrm{M}$
mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=5 \times 98 \mathrm{gm}$
Total mass of solution $=1.285 \times 1000 \mathrm{gm}=1285 \mathrm{gm}$
so $\%$ of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{5 \times 98}{1285} \times 100 \%=38.13 \%$
Answer is (B).
69. The compound that reacts fastest with methylamine is
(A)

(B)

(C)

(D)

Ans. (A)
Sol. Given reaction in $\mathrm{S}_{\mathrm{N}} 2$

70. HgO is prepared by two different methods : one shows yellow colour while the other shows red colour. The difference in colour is due to difference in
(A) electronic $d-d$ transitions
(B) particle size
(C) Frenkel defect
(D) Schottkey defect

Ans. (B)
71. The pH of a $1.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ solution of weak acid HA is 3.60 . The dissociation constant of the acid is
(A) 8.4×10^{-8}
(B) 8.4×10^{-6}
(C) 8.4×10^{-5}
(D) 8.4×10^{-2}

Ans. (C)
Sol. $X A \rightleftharpoons X^{+}+A^{-}$

C	0	0
$C(1-\alpha)$	$C \alpha$	$C \alpha$

$$
\alpha=\frac{C \alpha^{2}}{(1-\alpha)}
$$

Now, $\mathrm{pH}=3.60$ \& $\left(\mathrm{H}^{+}\right)=2.5 \times 10^{-4}$
$10^{-3} \alpha=2.5 \times 10^{-4}$
So $\alpha=\frac{0.25 \times 10^{-3}}{10^{-3}}=0.25 \quad$ So $K_{a}=\frac{10^{-3}(1 / 16)}{(3 / 4)}=\frac{1}{12} \times 10^{-3}=0.084 \times 10^{-3}=8.4 \times 10^{-5}$
Ans. (C) Correct
72. The best sequence of reactions for preparation of the following compound from benzene is

(A) (i) $\mathrm{CH}_{3} \mathrm{COCl}_{\mathrm{AlCl}}^{3} 3$ (ii) Oleum (iii) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl}$ (1 mole)/ $/ \mathrm{AlCl}_{3}$
(B) (i) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl}(1 \mathrm{~mole}) / \mathrm{AlCl}_{3}$ (ii) $\mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}$ (iii) Oleum
(C) (i) Oleum (ii) $\mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}$ (iii) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl}$ (1 mole) $/ \mathrm{AlCl}_{3}$
(D) (i) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{Cl}\left(1\right.$ mole) $/ \mathrm{AlCl}_{3}$ (ii) Oleum (iii) $\mathrm{CH}_{3} \mathrm{COCl} / \mathrm{AlCl}_{3}$

Ans. (B)
Sol.

73. Which reaction is spontaneous at all temperatures at standard pressure and concentration ?
(A) exothermic reaction with a decrease in entropy
(B) exothermic reaction with an increase in entropy
(C) endothermic reaction with a decrease in entropy
(D) endothermic reaction with an increase in entropy

Ans. (B)
Sol. As, $\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
For on spontaneous process, $\Delta \mathrm{G}^{\circ}$ must be negative.
if correct option is (B)
74. The IUPAC name of the following compound is

(A) 3-Aminocarbonylpent-1-en-4-yne
(B) 2-Ethenylbut-3-yn-1-amide
(C) 2-Ethynylbut-3-en-1-amide
(D) 3-Aminocarbonylpent-4-en-1-yne

Ans. (C)

Sol.

2-ethynylbut-3-enamide
75. $\quad \mathrm{NaOH}$ solution is added dropwise to HCl solution and the conductance of the mixture is measured after addition of each drop. The variation of conductance with volume of NaOH added is as shown below.

The statement that is not true for the above is
(A) decrease in conductance from $\mathrm{X} \rightarrow \mathrm{Y}$ is due to decrease in $\left[\mathrm{H}^{+}\right]$
(B) point Y represents the equivalence point of titration.
(C) Na^{+}has the higher equivalence conductance than $\mathrm{H}_{3} \mathrm{O}^{+}$
(D) segment YZ represents the conductance due to ions from NaCl and NaOH in solution.

Ans. (C)
Sol. (A) correct statement.
(B) correct statement.
(C) incorrect statement.
as $\mathrm{H}_{3} \mathrm{O}^{+}$has greater equivalence conductance than Na^{+}.
(A) Correct statement.
76. A colorless water-soluble compound on strong heating liberates a brown colored gas and leaves a yellow residue that turns white on cooling. An aqueous solution of the original solid gives a white precipitate with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$. The original solid is :
(A) $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
(B) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
(C) $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
(D) NaNO_{3}

Ans. (A)
77. The following compounds are heated (i) KNO_{3}, (ii) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ (iii) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, (iv) $\mathrm{NH}_{4} \mathrm{NO}_{3}$. Which of the following statement/s is/are correct?
(A) (ii) and
(iii) liberate NO_{2}
(B) (iv) liberates $\mathrm{N}_{2} \mathrm{O}$
(C) (i), (ii) and (iii) liberate O_{2}
(D) All statements are correct.

Ans. (D)
Sol. $\mathrm{KNO}_{3} \longrightarrow$ Liberates O_{2}
$\left.\begin{array}{l}\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \\ \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}\end{array}\right]$ Liberates NO_{2}
$\mathrm{NH}_{4} \mathrm{NO}_{3}$ liberates $\mathrm{N}_{2} \mathrm{O}$
$\Rightarrow \quad$ All options are correct.
$\Rightarrow \quad$ Correct answer is option (D) All statements are correct.
78. The diastereoisomer (Stereoisomer that is not a mirror image) of ' X ' is

' X '
(A)

(B)

(C)

(D)

Ans. (C)
79. Given $\Delta_{r} H^{\circ}=-54.08 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta_{r} S^{\circ}=10.0 \mathrm{~J} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$, the value of $\log _{10} \mathrm{~K}$ for the reaction $A \rightleftharpoons B$ is
(A) 3.4
(B) 10
(C) 0.53
(D) 113

Ans. (B)
Sol. $\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$

$$
\begin{aligned}
& =-54.08 \times 10^{3}-298 \times 10=-54080-2980 \\
& =-57060 \mathrm{~J}=-57.06 \mathrm{KJ}
\end{aligned}
$$

$\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT}$ /nk
$-57.06 \times 10^{3}=-8.314 \times 2.303 \log _{10} \mathrm{~K} \times 298 \Rightarrow \log _{10} \mathrm{~K}=\frac{57.06 \times 10^{3}}{8.314 \times 2.303 \times 298}=10$
$\Rightarrow \quad$ Correct option is (B) 10.
80. Which of the complex has the magnetic moment of 3.87 B.M. ?
(A) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(B) $\left[\mathrm{CoF}_{6}\right]^{3-}$
(C) $\left[\mathrm{CoCl}_{4}\right]^{2-}$
(D) $\left[\mathrm{Co}(\mathrm{dmg})_{2}\right]$ square planar complex (dmg = dimethyl glyoxime)

Ans. (C)
Sol. (a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}$
Oxidation state of cobalt is +3 and NH_{3} is a strong field ligand. Therefore pairing will occur. There will be no unpaired electron.
Therefore $\mu=0$.
(b) $\left[\mathrm{CoF}_{6}\right]^{-3}$

Oxidation state of cobalt is +3 and F^{-}is a weak field ligand. Therefore pairing will not occur. There
will be 4 unpaired electron.
Therefore $\mu=4.92$ BM.
(c) $\left[\mathrm{CoCl}_{4}\right]^{-2}$

Oxidation state of cobalt is +2 and Cl^{-}is a weak field ligand. Therefore pairing will not occur. There will be 3 unpaired electron.
Therefore $\mu=3.87$ BM.

Result @ Resonance

JEE (Adv.) 2016

JEE (Main) 2016

AIIMS 2016

CCP: $\mathbf{3 2}$ | DLP/ e-LP: 181

NEET 2016

Resonance's Forward Admission \& Scholarship Test (ResoFAST)

For Classes: V to XII
Target: JEE (Main+Advanced) \| JEE (Main) AIIMS/ NEET | BOARD/ IJSO/ NTSE

Enroll Now for Academic Session 2017-18 @ Coaching Fee of 2016-17

Academic Benefits*
More than $\mathbf{8 0 0}$ Academic Hours \& $\mathbf{5 0 0}$ Classes
More than $\mathbf{1 5 0 0 0}$ Academic Questions
More than $\mathbf{1 0 0}$ Testing Hours

Financial Benefits*

Upto ₹ 30000 + Saving on 1 Year Course Fee $\mathbf{5 0 \%}$ Concession on Admission Form Fee Upto 90\% Scholarship on Course Fee

Test Dates

$27^{\text {mh }}$ Nov $16 \mid 11^{\text {t" }}$ Dec $16 \mid 25^{\text {m" }}$ Dec $16 \mid 15^{\text {mit }}$ Jan 17

Resonance Eduventures Limited

CORPORATE OFFICE: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 | Tel. No.: 0744-3012100, 301२२22, 6635555 To Know more: sms RESO at $\mathbf{5 6 6 7 1}$ | E-mail: contact@resonance.ac.in | Website: www.resonance.ac.in | CIN: U80302RJ2007PLCO24029

