HINTS \& SOLUTIONS

1. (b)

Velocity at point A
$V_{A}{ }^{2}=u^{2}+2 a s$
Here $u=0$
$a=g$
$\mathrm{S}=(\mathrm{H}-\mathrm{h})$
$V_{A}{ }^{2}=0+2 g(H-h)$
$V_{A}=\sqrt{2 g(H-h)}$
Now for point A and point B
$V_{B}{ }^{2}=V_{A}{ }^{2}=2 a h$
$0=(\sqrt{2 g(H-h)})^{2}+2 a h \quad \operatorname{Here}\left(V_{B}=0 \& V_{A}=\sqrt{2 g(H-h)}\right)$
$2 \mathrm{ah}=2 \mathrm{~g}(\mathrm{H}-\mathrm{h})$
So $a=g\left(\frac{H-h}{h}\right)$
$a=g\left(\frac{H}{h}-1\right)$
2. (a)

Given $\lambda_{1}-\lambda_{2}=2 \mathrm{~m}$
And $\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}=1.4$
$\mathrm{n}_{1}=\frac{1000}{20}=50 \mathrm{~Hz}$.
So $\mathrm{n}_{2}=1.4 \times 50=70 \mathrm{~Hz}$
Now from equation (i)
$\lambda_{1}-\lambda_{2}=2$
$\frac{v}{n_{1}}-\frac{v}{n_{2}}=2$
$\frac{v}{50}-\frac{v}{70}=2$
$\mathrm{v}\left[\frac{20}{3500}\right]=2$
$\mathrm{v}=350 \mathrm{~m} / \mathrm{s}$
3. (d)

Deviation through M_{1}
$\delta_{1}=180-2 \alpha$. \qquad
Deviation through M_{2}
$\delta_{2}=180-2 \beta$.
so total deviation
$\delta=\delta_{1}+\delta_{2}=360-2(\alpha+\beta)$.
Now from $\triangle \mathrm{BOC}$
$\theta+90-\alpha+90-\beta=180$
$\theta=\alpha+\beta$.
From equation (iii) and (iv)
$\delta=360-2 \theta$
4. (c)

From $\Delta 182 \& \Delta 254$
$\frac{x}{y}=\frac{z}{b}$
From $\Delta 193$ \& $\Delta 367$
$\frac{x}{y}=\frac{z+h}{a}$
From Equ. (1) \& (2) $b=\frac{z y}{x}, a=\frac{(z+h) y}{x}$

Height of image $=a+h-b$
$=h+\frac{(z+h) y}{x}-\frac{z y}{x}=h+\left[\frac{y}{x}(z+h-z)\right]$
$=h+\frac{y h}{x}=h\left[1+\frac{y}{x}\right]$
Since $h, y \& x$ are constant so height of image will always be same.
5. (a)

Let instant is t then distance travel by particle P_{1} is $u_{1} t$ and distance travel by particle P_{2} is $u_{2} t$

So, relative separation
$S=\sqrt{\left(a-u_{1} t\right)^{2}+\left(b-u_{2} t\right)^{2}}$
$S=\sqrt{a^{2}+u_{1}^{2} t^{2}-2 a u_{1} t+b^{2}+u_{2}^{2} t^{2}-2 b u_{2} t}$
$S=\left(a^{2}+b^{2}+\left(u_{1}{ }^{2}+u_{2}{ }^{2}\right) t^{2}-2\left(a u_{1}+b u_{2}\right) t\right)^{\frac{1}{2}}$
So option (a) is correct
6. (c)

Let xkg mass of fuel burn per hour there for $\frac{\mathrm{x}}{3600} \mathrm{~kg} / \mathrm{sec}$.
Now efficiency $=\frac{\text { output }}{\text { input }}$
$0.25=\frac{25 \times 10^{3} w}{\frac{x}{3600} \times 17200 \times 10^{3} \times 4.2}$
$x \cong 5 \mathrm{~kg}$ per hour
Now electric energy generated per tonne of fuel burnt
$=\frac{17200 \times 10^{6} \times 0.25 \times 4.2}{3.6 \times 10^{6}}=5000 \mathrm{Kwh}$
7. (b)
$m=\frac{f}{f-u}$
For first case when object is at 25 cm
$m=\frac{f}{f-(-25)}$
Now for second case when object is at 40 cm
$m^{\prime}=\frac{f}{f-(-40)}$
$m=4 \mathrm{~m}^{\prime}$
$4 m^{\prime}=\frac{f}{f-(-25)}$
$(3) \div(2)$
$4=\frac{f}{f+25} \times \frac{f+40}{f}$
$4 \mathrm{f}+100=\mathrm{f}+40$
$3 f=60$
$\mathrm{f}=20 \mathrm{~cm}$
8. (b)

We know for TIR $\operatorname{sini}_{\mathrm{c}}=\frac{1}{\mu}$

From figure TIR $\operatorname{sini}_{c}=\frac{r}{\sqrt{r^{2}+h^{2}}}$
So $\quad \frac{r}{\sqrt{r^{2}+h^{2}}}=\frac{1}{\mu}$

$$
r^{2} \mu^{2}=r^{2}+h^{2}
$$

$$
r^{2}\left(\mu^{2}-1\right)=h^{2}
$$

$$
\mathrm{r}=\frac{\mathrm{h}}{\sqrt{\mu^{2}-1}}=\frac{\frac{1}{2}}{\sqrt{(1.5)^{2}-1}}=0.447 \mathrm{~cm}
$$

9. (c)
$\alpha=\frac{L^{\prime}-L}{L\left(T^{\prime}-T\right)}$
So unit of a is K^{-1} So option (C) is correct
10. (a)

Since time period is 2 sec
So time taken in 60 oscillation is 2 min
Now soldier complete 110 beats in 2 min. therefore 55 beats per min which is less than 60 so it is bradycardia
Now $\quad T=2 \pi \sqrt{\frac{\ell}{g}}$

$$
2=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}
$$

$$
4=4 \pi^{2} \frac{\ell}{\mathrm{~g}}
$$

$$
\ell=1 \mathrm{~m}
$$

That means length is 1 m and symptom is brady-cardia
So option (a) incorrect

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
11. (b)

$R_{\text {eq }}$ between A and B
$=\frac{29 R}{8}$
So minimum value of R, for integral value for equivalent resistance between A and B must be 8Ω
12. (b)

In water
$\frac{\rho_{0}}{\rho_{\mathrm{L}}}=\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{V}} \Rightarrow \frac{\rho_{0}}{1}=\frac{5 / 8 \mathrm{~V}}{\mathrm{~V}} \Rightarrow \rho_{0}=\frac{5}{8}$
For salt solution.

$$
\begin{aligned}
& \frac{5 / 8}{1.12}=\frac{V_{i}}{V} \\
& \text { so } \frac{V_{o}}{V}=1-\frac{V_{i}}{V}
\end{aligned}
$$

$\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}}=1-\frac{5 / 8}{1.12}=0.44$
13. (b)
$F=k g \frac{M}{\sec ^{2}}$
Unit of mass $=\frac{F \sec ^{2}}{m}=\frac{F}{V}$ sec

$$
=\frac{10}{100} \times \frac{1}{100}
$$

14. (a)

$$
=10^{-3} \mathrm{~kg}
$$

$\mathrm{T} \sin \theta=\frac{K Q^{2}}{4 \mathrm{r}^{2}}$
and $\quad \mathrm{T} \cos \theta=\mathrm{mg}$

$$
\tan \theta=\frac{\mathrm{KQ}^{2}}{4 \mathrm{r}^{2} \mathrm{mg}}
$$

So $\quad \tan \theta=\frac{\mathrm{KQ}^{2}}{4 \sin ^{2} \theta \mathrm{gm}} \quad \because \sin \theta=\frac{\mathrm{r}}{1}$
$\tan \theta \sin ^{2} \theta=\frac{\mathrm{KQ}^{2}}{4 \mathrm{gm}} \quad \mathrm{r}=\sin \theta$
θ is maximum . so g is minimum
15. (c)

According to fraunhaffer good absorbers are good radiators and bad absorbers are bad radiators so black body is good absorber and good radiator.
16. (b*)

reflection from wall - I
$360-30 \mathrm{t}_{1}=330 \mathrm{t}_{1}$
$\mathrm{t}_{1}=1 \mathrm{sec}$
$720+30 t_{2}=330 t_{2}$
$\mathrm{t}_{2}=2.4 \mathrm{sec}$
$1080-30 t_{3}=330 t_{3}$
$\mathrm{t}_{3}=\frac{1080}{360}=3 \mathrm{sec}$
reflection from wall - II
$360+30 t_{1}=330 t_{1}$
$\mathrm{t}_{1}=1.2 \mathrm{sec}$
$720-30 t_{2}=330 t_{2}$
$\mathrm{t}_{2}=2 \mathrm{sec}$
$1080+30 t_{3}=330 t_{3}$
$\mathrm{t}_{3}=3.6 \mathrm{sec}$

Answer May be (b)
17. (b)
(i) Since potential at surface of solid and hollow sphere are $\frac{\mathrm{Kq}}{\mathrm{r}}$ so option I is incorrect.
(ii) A charged body can attract another uncharged body so it is correct.
(iii) Two electric line of force never intersect each other so this is incorrect.
18. (b)

Let current through V be ' x '
So current through R is $(0.13-x)$
Now potential difference in parallel combination must be same.
So $117=R(013-x) \ldots \ldots$....(i)
And V = IR
$117=9000 x$
so $x=\frac{117}{9000}$
using this value in equation (i)
$117=R\left(0.13-\frac{117}{9000}\right)$
or $R=1000 \Omega$
19. (b)
20. (c)

Because volume is minimum at $4^{\circ} \mathrm{C}$ so volume will increase at temperature greater than or less than $4^{\circ} \mathrm{C}$.
21. (d)

Because number of protons are same in both, but number of electrons are more in p^{3-}, so there will be greater repulsion between electrons in p^{3-}
22. (b)

Given
Molarity $=0.5$ molar
$\mathrm{M}=0.5 \mathrm{M}$
Volume $=4$ litre
Mass of substance (x) $=240 \mathrm{gm}$
Molarity $(M)=\frac{\text { given Mass of substance }}{\text { Molecular mass of substance } \times \text { volume }}$
$M=\frac{X}{M W \times V}$
$0.5=\frac{240}{\mathrm{MW} \times 4}$
$\mathrm{MW}=\frac{240}{0.5 \times 4}$
$=\frac{600}{5}=120 \mathrm{gm} / \mathrm{mole}$
23. (c)

Density $(\mathrm{d})=1.28 \mathrm{~g} / \mathrm{cc}=\frac{\mathrm{m}}{1 \mathrm{ml}} \mathrm{m}=1.28 \times 10^{3}$
$M=4.2=\frac{w}{98 \times 1000} \times 1000$
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{w})=4.2 \times 98 \mathrm{~g}$ of $1000 \mathrm{~cm}^{3}$
$\left(\frac{\mathrm{m}}{\mathrm{wl}}\right) \%=\frac{4.2 \times 98 \times 10}{1.28 \times 10^{3}} \times 100=32 \%$
24. (a)

Element	\% composition	Atomic mass	Relative no.od after	Simple atomic ratio	Simplets whole No. Atomic ratio
X	60	10	$\frac{60}{10}=6$	$\frac{6}{2}=2$	3
Y	40	20	$\frac{40}{20}=2$	$\frac{2}{2}=1$	1

Simplet formula of this compound $=X_{3} Y$

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
25. (c)

Given number of Nitrogen atom $=4.095 \times 10^{24}$
Mole $=\frac{\text { given number of atom }}{\text { Avogadro number }}$
Mole of Nitrogen atom $=\frac{4.095 \times 10^{24}}{6.023 \times 10^{23}} \quad=6.80$ mole
Now we know that
1 mole nitrogen gas has 2 mole of nitrogen atom
So mole of nitrogen gas $=\frac{\text { mole of Nitrogen atom }}{2}=\frac{6.80}{2}=3.4 \mathrm{~mole}$
26. (d)

Due to absence of gravity
27. (c)

$\mathrm{n}_{\mathrm{SO}_{2}}=\mathrm{n}_{\mathrm{CH}_{4}}=\mathrm{n}_{\mathrm{O}_{2}}$
$\frac{W_{1}}{64}=\frac{W_{2}}{16}=\frac{W_{3}}{32}$
$64 \times \frac{W_{1}}{64}=64 \times \frac{W_{2}}{16}=64 \times \frac{W_{3}}{32}$
$\mathrm{W}_{1}: 4 \mathrm{~W}_{2}: 2 \mathrm{~W}_{3}$
If $W_{2}=x$
then $W_{1}: W_{2}: W_{3}$
4x: x: 2x
4:1:2
28. (b)

Observation of student ' Q ' is correct because sulhpur dioxide is soluble in water, then water will rushed in jar.
29. (b)
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{SO}_{4}{ }^{2-}$
1 mole $\rightarrow 27 \times 2 \mathrm{gm}$
$54 \mathrm{gm} \mathrm{Al}^{3+}$ ions will be formed by $=1{\mathrm{~mole} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}, ~}_{\text {l }}$
$1 \mathrm{gm} \mathrm{Al}^{3+}$ ions will be formed by $=\frac{1}{54}{\text { mole } \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}^{3}$
$0.17 \mathrm{gm} \mathrm{Al}^{3+}$ ion will be formed by $=\frac{0.17}{54}{\text { mole } \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}^{2}$

$$
=0.00314 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}
$$

We know $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{Ba}(\mathrm{OH})_{2} \rightarrow 3 \mathrm{BaSO}_{4}+2 \mathrm{Al}(\mathrm{OH})_{3}$ ppt ppt
From stochiometry
$\rightarrow 1$ mole $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \quad=3$ mole BaSO_{4}
0.00314 mole $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ will produce $=3 \times 0.00314 \mathrm{~mole}^{2} \mathrm{BaSO}_{4}$
$=3 \times 0.00314 \times 233.3 \mathrm{gm} \mathrm{BaSO} 4=2.20 \mathrm{gm} \mathrm{BaSO} 4$
$\rightarrow 1$ mole $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ will produce $=2$ mole $\mathrm{Al}(\mathrm{OH})_{3}=2 \times 78 \mathrm{gm} \mathrm{Al}(\mathrm{OH})_{3}$ 0.00314 mole $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ will produce $=2 \times 78 \times 0.00314 \mathrm{gm} \mathrm{Al}(\mathrm{OH})_{2}$ $=0.48 \mathrm{~g} \mathrm{gm} \mathrm{Al}(\mathrm{OH})_{3}$
\rightarrow Now the total mass of precipitate $=$ mass of $\mathrm{BaSO}_{4}+0.489 \mathrm{Al}(\mathrm{OH})_{3}=2.68984 \mathrm{gm}$ precipitate $\approx=2.7 \mathrm{gm}$ precipitate

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
30. (b)

Bobby added $\mathrm{Na}_{3} \mathrm{PO}_{4}$ which is basic in nature, remaining all salts are either neutral or acidic. So, $\mathrm{Na}_{3} \mathrm{PO}_{4}$ will increase the pH of soil which is suitable for growing the daffodil
31. (a)

Because ionic compound has high melting point then co-valent compounds.
32. (a)

When CO_{2} is KOH them reaction is
$2 \mathrm{KOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{~K}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
1 mole of $\mathrm{H}_{2} \mathrm{CO}_{3}$ is required for 2 mol of KOH
Given data
$\Rightarrow 1000 \mathrm{ml}$ solution contain 0.1 mol KOH
1 ml solution contain $\frac{0.1}{1000}$
then 5 ml contain $=\frac{0.1}{1000} \times 5=5 \times 10^{-4} \mathrm{~mol}$
If 2 mole KOH dissolve $\rightarrow 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{CO}_{3}$
then 1 mol KOH dissolve $\rightarrow \frac{1}{2} \mathrm{~mol} \mathrm{H}_{2} \mathrm{CO}_{3}$
$5 \times 10^{-4} \mathrm{~mol} \mathrm{KOH}$ dissolve $\rightarrow \frac{1}{2} \times 5 \times 10^{-4} \mathrm{~mol}$
$2.5 \times 10^{-4} \mathrm{~mol} \mathrm{H}_{2} \mathrm{CO}_{3}$
$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
1 mole C gives $1 \mathrm{~mol} \mathrm{CO}_{2}$ and 1 mol CO 2 gives $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{CO}_{3}$
So requirement of C is $2.5 \times 10^{-4} \times 12=30 \times 10^{-4} \mathrm{~g}$
In $\mathrm{mg}=30 \times 10^{-4} \times 10^{3} \mathrm{mg}$
$=3 \times 10^{-3} \times 10^{3}$
$=3 \mathrm{mg}$
33. (a)

Given both contain equal number molecule
So in (a) option
mole of $\mathrm{SO}_{2}=\frac{1120}{22400}=\frac{1}{20}=0.05$ mole
Mole of $\mathrm{NH}_{3}=\frac{0.85}{17}=0.05$ mole
Equal moles or equal volume of all gases at NTP contains equal number of molecules.
34. (a)
$\mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu}$
$7 \mathrm{~g}+21 \mathrm{gm} \quad 8.6 \mathrm{~g}$
Acc. to Law of conservation of mass. 28-8.6 = 19.40 gm
35. (a)

If solutions are same in nature
$N_{1} V_{1}+N_{2} V_{2}=N_{R} V_{R}$
$\mathrm{V}_{\mathrm{R}}=2 \operatorname{Ltr}\left(\mathrm{~V}_{1}+\mathrm{V}_{2}=2 \mathrm{Ltr}\right)$
If $\mathrm{V}_{1}=\mathrm{x}$
$V_{2}=(2-x)$
$\Rightarrow 0.5 \times x+0.1(2-x)=2 \times 0.2$
$\Rightarrow 0.5 \mathrm{x}+0.2-0.1 \mathrm{x}=0.4$
$\Rightarrow 0.4 \mathrm{x}=0.2$
$x=\frac{0.2}{0.4}=0.5$
$\mathrm{x}=0.5=\mathrm{V}_{1}=0.5 \mathrm{Ltr}$
$\mathrm{V}_{2}=2-0.5=1.5 \mathrm{Ltr}$

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
36. (c)

Oxalic acid -6.39 g
$(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \rightarrow$ gram molecular mass $=126 \mathrm{gm}$
Mole of oxalic acid $=\frac{6.3}{126}=\frac{1}{20}=0.05 \mathrm{~mol}$
In 100 ml water $=0.05 \mathrm{~mol}$ of oxalic acid present
Now In 25 ml of water, amount of oxalic acid
will be $=\frac{0.05}{100} \times 25=\frac{0.05}{4} \mathrm{~mol}$
250 ml solution contains $=0.0125 \mathrm{~mol}$ of oxalic acid
then 10 ml contains $=\frac{0.0125}{250} \times 10=\frac{0.0125}{25}=0.0005 \mathrm{~mol}$
So, mole of NaOH will be required $=0.0005 \times 2$
Mass of $\mathrm{NaOH}=0.001 \times 40=0.04 \mathrm{gm}$
Weight of NaOH in $\mathrm{ppm}=0.04 \times 1000=40$
37. (d)

Iso-octane improve the quality of petrol because it has more branches.
38. (a)
$2 \mathrm{~K} \stackrel{+5}{\mathrm{Br}} \mathrm{O}_{3}+12 \mathrm{H}^{+} 10 \mathrm{e}^{-} \rightarrow \mathrm{Br}_{2}+6 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~K}^{+}$
Total change in oxidation number of $\mathrm{KBrO}_{3}=$ valency factor $=5$
Eq. Wt. of $\mathrm{KBrO}_{3}=\frac{\text { Molecular wt. of } \mathrm{KBrO}_{3}}{\text { Valency factor }}$
Eq. Wt. $\mathrm{KBrO}_{3}=\frac{\mathrm{M}}{5}$
39. (c)
KHCO_{3}

For basic salt solution colour would be blue
Universal indicator colour for different pH range

pH	Type of solution	Colour
<3	Strong acid	Red
$3-6$	Weak acid	Orange or yellow
7	Neutral	Green
B-11	Weak basic	Blue
>11	Strong base	Violet of indigo

40. (c)
(a) Chalcocite $=\mathrm{Cu}_{2} \mathrm{~S}$
(b) Magnetite $=\mathrm{Fe}_{3} \mathrm{O}_{4}$
(c) Calamine $=\mathrm{ZnCO}_{3}$
(d) Galena $=\mathrm{PbS}$

Option (c) is correct
calamine is a ore of zinc

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
41. (c)

Diameter of $\mathrm{C}_{4}=15+15+10=40$
Radius $=20 \mathrm{~cm}$
42. (d)

$$
\begin{aligned}
& \frac{m(m+1)}{2} \times \frac{n(n+1)}{2} \times \frac{p(p+1)}{2} \\
& \frac{5 \times 6}{2} \times \frac{5 \times 6}{2} \times \frac{5 \times 6}{2} \\
& 15 \times 15 \times 15 \\
& =3375
\end{aligned}
$$

43. (d)
$n^{2}\left(n^{2}-1\right)\left(n^{2}-n-2\right)$
$n^{2}\left(n^{2}-1\right)\left(n^{2}-2 n+n-2\right)$
$n^{2}\left(n^{2}-1\right)(n-2)(n+1)$
$n^{2}(n-1)(n+1)(n-2)(n+1)$
$(n-2)(n-1) n^{2}(n+1)^{2}$ (after factorization)
$\Rightarrow(n-2)(n-1)(n)(n+1)$ is the product of four consecutive number which is always divisible by $4!=24$.
\Rightarrow Now in this product of $(n-2)(n-1) n^{2}(n+1)^{2}$ there are two perfect squares of n and $n+1$ in which one of them should be even so it should be a multiple of 2 . and square of 2 is 4 .
\Rightarrow So $(n-2)(n-1)(n)(n+1)$ is divisible by 24 and $(n-2)(n-1)(n)^{2}(n+1)^{2}$ should be divsible by 48 .
44. (c, d)

12 through
one number (3 times) 4 number (2 times) one number (1 time)
1, 2, 3, 4, 5, 6
each number constant at least one time
$\frac{6 \times 7}{2}=21$
Required sum $=46-41=25$

6 - three times
$1,3,4,5 \rightarrow$ two times
$2 \rightarrow$ one time
at least number is 2 .
One more case is possible
$2+3+4+6+5+5=25$
so at least number is 1 .
45. (a)

In \triangle AEB by sine Rule

$\frac{\sin 45}{A E}=\frac{\sin 75}{A B}$
$\frac{\frac{1}{\sqrt{2}}}{2}=\frac{\frac{\sqrt{3}+1}{2 \sqrt{2}}}{\mathrm{AB}}$
$A B=\sqrt{3}+1$
Area of square $A B C D=A B^{2}=(\sqrt{3}+1)^{2}$
$=3+1+2 \sqrt{3}=4+2 \sqrt{3}$.
46. (c, d)

Let $\mathrm{n}=2^{5}$
$\therefore 9 \times n=2^{5} \times 3^{2}$
Number of divisor $=(5+1)(2+1)$
$=6 \times 3=18$
Let $\mathrm{n}=75=3 \times 5^{2}$
$\therefore 9 \times n=3^{3} \times 5^{2}$
Number of divisor $=(3+1)(2+1)$
$=4 \times 3=12$

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
47. (Bonus)

$$
\begin{aligned}
& x=\frac{2 a b}{b^{2}+1} \\
& \frac{\sqrt{a+x}-\sqrt{a-x}}{\sqrt{a+x}+\sqrt{a-x}} \\
& \Rightarrow \frac{(\sqrt{a+x})^{2}+(\sqrt{a-x})^{2}-2 \sqrt{(a+x)(a-x)}}{(a+x)-(a-x)} \\
& \Rightarrow \frac{a+x+a-x-2 \sqrt{a^{2}-x^{2}}}{2 x} \\
& \Rightarrow \frac{2 a-2 \sqrt{a^{2}-x^{2}}}{2 x} \\
& \Rightarrow \frac{a-\sqrt{a^{2}-\left(\frac{2 a b}{b^{2}+1}\right)^{2}}}{\frac{2 a b}{b^{2}+1}} \\
& \Rightarrow\left(a-\sqrt{a^{2}-\frac{4 a^{2} b^{2}}{b^{2}+1}}\right) \times \frac{b^{2}+1}{2 a b} \\
& \Rightarrow \frac{a\left[\frac{b^{2}+1-\sqrt{\left(b^{2}+1\right)^{2}-4 b^{2}}}{b^{2}+1}\right] \times \frac{b^{2}+1}{2 a b}}{2 b} \\
& \Rightarrow \frac{b^{2}+1-\sqrt{b^{4}+1+2 b^{2}-4 b^{2}}}{2 b} \\
& \Rightarrow \frac{b^{2}+1-\sqrt{\left(1-b^{2}\right)^{2}}}{2 b} \Rightarrow \frac{b^{2}+1-1+b^{2}}{2 b}=b
\end{aligned}
$$

48. (b)

Let n_{1} and n_{2} are number of sides of polygon them
$\mathrm{n}_{1}+\frac{\mathrm{n}_{2}\left(\mathrm{n}_{2}-3\right)}{2}=103$
$2 n_{1}+n_{2}{ }^{2}-3 n_{2}=206$
$\frac{\mathrm{n}_{1}\left(\mathrm{n}_{1}-3\right)}{2}+\mathrm{n}_{2}=80$
$\mathrm{n}_{1}{ }^{2}-3 \mathrm{n}_{1}+2 \mathrm{n}_{2}=160$
multiply equation (i) by (ii) by and equation (ii) by 3 and add.
$4 n_{1}+2 n_{2}^{2}-6 n_{2}+3 n_{1}^{2}-9 n_{1}+6 n_{2}=412+480$
$2 n_{2}{ }^{2}+3 n_{1}{ }^{2}-5 n_{1}=892$
and again multiply (i) by (iii) and equation (ii) by 2 and add.
$2 \mathrm{n}_{1}{ }^{2}+3 \mathrm{n}_{2}{ }^{2}-5 \mathrm{n}_{2}=938$
subtract equation (iii) from (iv)
$-\mathrm{n}_{1}^{2}+\mathrm{n}_{2}^{2}-5 \mathrm{n}_{2}+5 \mathrm{n}_{1}=46$
$\left(n_{2}{ }^{2}-n_{1}{ }^{2}\right)-5\left(n_{2}-n_{1}\right)=46$
$\left(n_{2}-n_{1}\right)\left(n_{2}+n_{1}-5\right)=46$
Factors of 46 are
1×46
2×23
23×2
46×1

In case - 1
$\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right)$ and $\mathrm{n}_{2}+\mathrm{n}_{1}-5=46 \quad \Rightarrow \quad \mathrm{n}_{2}+\mathrm{n}_{1}=5$
After solving
$\mathrm{n}_{2}=26$ and $\mathrm{n}_{1}=25$
But given condition of diagonals are not satisfy.
In case - 2
$\mathrm{n}_{2}-\mathrm{n}_{1}=2$
$\mathrm{n}_{1}+\mathrm{n}_{2}-5=23 \quad \Rightarrow \quad \mathrm{n}_{1}+\mathrm{n}_{2}=28$
After solving
$n_{1}=13, n_{2}=15$
In case - 3
$\mathrm{n}_{2}-\mathrm{n}_{1}=23$
$\mathrm{n}_{1}+\mathrm{n}_{2}-5=2, \mathrm{n}_{1}+\mathrm{n}_{2}=7$
$\mathrm{n}_{2}=15$ and $\mathrm{n}_{1}=-8$
not possible.
In case - 4
$\mathrm{n}_{2}-\mathrm{n}_{1}=46$ and $\mathrm{n}_{1}+\mathrm{n}_{2}-5=1$
$\Rightarrow \quad \mathrm{n}_{1}+\mathrm{n}_{2}=6$.
$n_{1}=-20, n_{2}=26$.
not possible
Hence answer is 28.
49. (b)

Let number of Red \& Yellow balls are respectively.
ATQ
$r-1=\frac{1}{7}(r-1+y) \Rightarrow 7 r-7=r-1+y$
$6 r-y=6$
$r=\frac{1}{6}(r+y-1)$
$\Rightarrow 6 r=r+y-1$
$5 r-y=-1 \ldots .(2)$
(1) $-(2)$
$6 r-y=6$
$5 r-y=-1$
$-+\quad+$
$r=7$
$\therefore y=36$
Number of balls $=r+y=7+36=43$
Sum of digit $=4+3=7$

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
50. (b)

$\Delta K Y C \sim \Delta K B X$
$\frac{K Y}{K B}=\frac{K C}{K X}=\frac{Y C}{X B}=\frac{1}{2}$
Let ar $\Delta K Y C=a$
$\frac{\text { ar } \triangle K Y C}{\text { ar } \triangle K C B}=\frac{K Y}{K B}=\frac{1}{2}$
$\frac{\mathrm{a}}{\mathrm{ar} \triangle \mathrm{KCB}}=\frac{1}{2}$
ar \triangle KCB $=2 \mathrm{a}$
$\frac{\text { ar } \triangle \mathrm{KCB}}{\text { ar } \triangle \mathrm{KBX}}=\frac{\mathrm{CK}}{\mathrm{KX}}=\frac{1}{2}$
$\frac{2 \mathrm{a}}{\text { ar } \triangle \mathrm{KBX}}=\frac{1}{2}$
ar $\triangle \mathrm{KBX}=4 \mathrm{a}$
$\frac{\text { ar } \triangle \mathrm{XBC}}{\text { ar } \mathrm{ABC}}=\frac{\mathrm{BX}}{\mathrm{AB}}=\frac{2}{3}$
$\frac{6 \mathrm{a}}{\text { ar } \triangle \mathrm{ABC}}=\frac{2}{3}$
$\Rightarrow \operatorname{ar} \triangle A B C=9 a$.
ar Rect ABCD $=2 \mathrm{ar} \triangle \mathrm{ABC}=2$ (9a) $=18 \mathrm{a}$
ar XKYL $=$ ar ABCD $-\left[a+4^{a}+2^{a}+a+4^{a}+2 a\right]$
$=18^{\mathrm{a}}-[14 \mathrm{a}]=4 \mathrm{a}$
$\frac{\text { ar XKYL }}{\text { ar } A B C D}=\frac{4 a}{18 a}=\frac{2}{9}=\frac{m}{n}$
$\therefore \mathrm{m}+\mathrm{n}=2+9=11$.
51. (a)

$\angle B A D=\angle D A C=x(A D$ is angle bisector $)$
$\angle B C D=\angle B A D=x$
$\angle \mathrm{BAC}=\angle \mathrm{ACB}=2 \mathrm{x}$ (equilateral triangle)
$\angle \mathrm{DOC}=2 \times \mathrm{DAC}=2 x$
In $\triangle \mathrm{DOC} \quad \Rightarrow \quad \mathrm{OD}=\mathrm{DC}$
In $\triangle B D C \quad \Rightarrow \quad B D=D C$
and $B D+D C=4$
$B D=D C=2$

$$
O D=D C=2
$$

Diameter $=2 \times 2=4 \mathrm{~m}$.
52. (c)
$\mathrm{T}_{\mathrm{m}}=\frac{1}{\mathrm{n}}, \mathrm{T}_{\mathrm{n}}=\frac{1}{\mathrm{~m}}$
$T_{m n}=A+(m n-1) D \quad . \quad \frac{1}{n}=A+(m-1) D \ldots \ldots$.

$$
\begin{equation*}
\frac{1}{m}=A+(n-1) D \tag{1}
\end{equation*}
$$

equ. (1) - equ.(2)
$\frac{1}{n}-\frac{1}{m}=(m-1) D-(n-1) D$
$\frac{m-n}{n m} \Rightarrow D(m-1-n+1)$
$\frac{\mathrm{m}-\mathrm{n}}{\mathrm{nm}} \Rightarrow \mathrm{D}(\mathrm{m}-\mathrm{n})$
$D=\frac{1}{n m}$
from equ. (1)
$\frac{1}{n}=A+(m-1) \times \frac{1}{n m}$
$\mathrm{A}=\frac{1}{\mathrm{~nm}}$
$\mathrm{T}_{\mathrm{nm}}=\frac{1}{\mathrm{~nm}}+(\mathrm{mn}-1) 1-\frac{1}{\mathrm{~nm}}=1$
53. (c)

Construction draw DM || BF
In $\triangle B C F, D$ is mid point of $B C$ \& $D M|\mid B F$
$F M=M C \Rightarrow \frac{F M}{M C}=\frac{1}{1}$
In \triangle ADM
$E F \| D M, \frac{A E}{E D}=\frac{1}{2}$

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
therefore $\frac{\mathrm{AF}}{\mathrm{FM}}=\frac{1}{2}$
therefore $\mathrm{AF}: \mathrm{FM}: \mathrm{MC} \Rightarrow 1: 2: 2$
$\frac{A F}{F C}=\frac{1}{4}$
54. (a)
$p x^{2}+q x+r=0$
$\sin ^{2} \theta+\cos ^{2} \theta=-\frac{q}{p}$
$\sin \theta \cos \theta=\frac{r}{p}$
$\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=\frac{q^{2}}{p^{2}}$
$1+2 \frac{r}{p}=\frac{q^{2}}{p^{2}}$
$\frac{p+2 r}{P}=\frac{q^{2}}{p^{2}}$
$p(p+2 r)=q^{2}$
$p^{2}+2 p r=q^{2}$
$p^{2}-q^{2}+2 p r=0$
55. (b)
$a(n-2), a(n), a(n+3)$ are in AP
$\frac{(n-2-2) \times 180}{n-2} \quad, \quad \frac{(n-2) \times 180}{n}$
$\frac{(n-4) \times 180}{n-2} \quad, \quad \frac{(n-2) \times 180}{n}$

$$
\begin{aligned}
& \frac{(n+3-2) \times 180}{n+3} \\
& \frac{(n+1) \times 180}{n+3}
\end{aligned}
$$

from the property of A.P.

$$
\begin{aligned}
& \frac{(n-4) \times 180}{n-2}+\frac{(n+1) \times 180}{n+3}=\frac{(n-2) \times 180}{n} \\
& \frac{(n-4) \times 180}{n-2}+\frac{(n+1) \times 180}{n+3}=\frac{2(n-2) \times 180}{n} \\
& 180\left(\frac{n-4}{n-2}+\frac{n+1}{n+3}\right)=180 \frac{(n-2) \times 2}{n} \\
& \frac{(n-4)(n+3)+(n+1)(n-2)}{(n-2)(n+3)}=\frac{2 n-4}{n} \\
& \frac{n^{2}+3 n-4 n-12+n^{2}-2 n+n-2}{n^{2}+3 n-2 n-6}=\frac{2 n-4}{n} \\
& \frac{2 n^{2}-2 n-14}{n^{2}+n-6}=\frac{2 n-4}{n} \\
& 2 n^{3}-2 n^{2}-14 n=(2 n-4)\left(n^{2}+n-6\right) \\
& 2 n^{3}-2 n^{2}-14 n=2 n^{3}+2 n^{2}-12 n-4 n^{2}-4 n+24 \\
& 2 n=24 \\
& n=12
\end{aligned}
$$

Sum of the digits $=1+2=3$
56. (b)

Let numbers are
$\frac{a}{d^{2}}, \frac{a}{d}, a, a d, a d^{2}$
So, A.T.Q.
$\frac{a}{d^{2}}+\frac{a}{d}+a+a d+a d^{2}=24$
$a\left\{\frac{1+d+d^{2}+d^{3}+d^{4}}{d^{2}}\right\}=24 \quad$ and $\quad \frac{1+d+d^{2}+d^{3}+d^{4}}{d^{2}}=\frac{24}{a}$
$\frac{d^{2}}{a}+\frac{d}{a}+\frac{1}{a}+\frac{1}{a d}+\frac{1}{a d^{2}}=6$
$\frac{1+d+d^{2}+d^{3}+d^{4}}{a d^{2}}=6$
From equation (i)
$\frac{24}{a \times a}=6$
$a^{2}=4$
$a= \pm 2$
Product of the terms $=\frac{a}{d^{2}} \times \frac{a}{d} \times a \times a d \times a d^{2}=a^{5}=(\pm 2)^{5}= \pm 32$.
Answer is 32.
57. (Bonus)
491×25 b is divisible by 36 means divisible by 4 and 9 .
$\Rightarrow 491$ not a divisible by 4 in any case of a.
Hence 25b should be divisible by4.
So possible values of b are $2 \& 6$.
Case-1 If $b=2,252$ is also divisible by 9 .
Hence 252 is divisible by 36 .
So possible value of a is 10 (from 0 to 9)
ordered pairs = 10
Case-2 If $b=6,252$ is not divisible by 9 .
So $4 \mathrm{a} 1 \Rightarrow$ divisible by 9 .
Possible value of a is only 4.
Ordered pairs = 1 .
Tortal ordered pairs of (a, b) are $=10+1=11$
58. (a)
$\sqrt{\underbrace{111 \ldots 1}_{2018}-\underbrace{222 \ldots 2}_{1009}}$
$=\sqrt{\frac{1}{9} \times \underbrace{9999 \ldots 9}_{2018}-\frac{2}{9} \times \underbrace{9999 \ldots 9}_{1009}}$
$=\sqrt{\frac{10^{2018}-1}{9}-\frac{2}{9}\left(10^{1009}-1\right)}$
$=\sqrt{\frac{10^{2018}-2 \times 10^{1009}+1}{9}}$
$=\sqrt{\left(\frac{10^{1009}-1}{3}\right)^{2}}=\frac{10^{1009}-1}{3}$
59. (d)

$\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
Hence $\frac{\operatorname{Area}(\mathrm{ADE})}{\operatorname{Area}(\mathrm{ABC})}=\left(\frac{1}{4}\right)^{2}=\frac{1}{16}$
Let area of $\triangle A B C=16 x$, then area of $\triangle A D E=x$
Area of BCFE $=16 x-x=15 x$
Now in trapezium BCFE
Area $(\triangle \mathrm{DMN})=$ Area (MEN)
\& Area $(B D N)=$ Area $(E N C) \quad\{\because M \& N$ are mid points of DE \& BC respectively $\}$
Hence Area $(B N M D)=$ Area $($ NCEM $)=\frac{15 x}{2}$
So $\frac{\operatorname{Area}(\mathrm{BNMD})}{\operatorname{Area}(\mathrm{ABC})}=\frac{\frac{15 x}{2}}{16 x}=\frac{15}{32}$
60. (d)
$\left[\frac{100}{1}\right],\left[\frac{100}{2}\right],\left[\frac{100}{3}\right], \ldots \ldots . .,\left[\frac{100}{20}\right]$
After solving values are
$100,50,33,25,20,16,14,12,11,10,9,8,7,7,6,6,5,5,5,5$
Distinct integers are $=15$.

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

