DATE : 19-11-2017

HINTS \& SOLUTIONS

21. (a)

1008, 1109 9997
$a=1008$
d = 101
$a_{n}=9997$
$a_{n}=a+(n-1) d$
$9997=1008+(n-1) 101$
$8989=(n-1) 101$
$89=n-1$
$\mathrm{n}=90$.
22. (c)
$1 \frac{1}{2}+1 \frac{1}{6}+1 \frac{1}{12}+1 \frac{1}{30}+\ldots . .1 \frac{1}{380}$
$=19+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+\ldots .+\frac{1}{380}$
$=19+\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 6}+\frac{1}{5 \times 6}+\ldots .+\frac{1}{19 \times 20}$
$=19+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{19}-\frac{1}{20}=19+1-\frac{1}{20}$
$=20-\frac{1}{20}=\frac{400-1}{20}=\frac{399}{20}=19.95$.
23. (c)

Parallelogram
24. (c)

198396198
$198396198=2 \times 3 \times 3 \times 7 \times 7 \times 11 \times 11 \times 11 \times 13 \times 13$
This number should be divided by 22 .
So that result is perfect square.
25. (b)

$$
\begin{align*}
& x(x+y+z)=135 \tag{1}\\
& y(x+y+z)=315 \tag{2}\\
& z(z+x+y)=243 \tag{3}\\
& \text { Add }(1),(2) \&(3) \\
& x^{2}+y^{2}+z^{2}+2(x y+y)^{2}+(2) \\
& (x+y+z)^{2}=729 \\
& x+y+z=27 \tag{4}\\
& \begin{array}{l}
\text { From }(1),(2),(3) \text { and }(4) \\
x=5 \\
y=13 \\
x^{2}+y^{2}+z^{2} \\
=25+169+81=275
\end{array} \\
&
\end{align*}
$$

26. (b)

$$
\begin{align*}
& p+q+r=2 \\
& p^{2}+q^{2}+r^{2}=30 \\
& p q r=10 \\
& (1-p)(1-q)(1-r) \\
& (1-r)(1-q-p+p q) \\
& 1-q-p+p q-r+r q+r p-r p q \\
& 1-p-q-r+p q+r q+r p-r p q \\
& 1-(p+q+r)+p q+r q+r p-r p q \\
& (p+q+r)^{2}=p^{2}+q^{2}+r^{2}+2(p q+r q+r p) \tag{1}\\
& 4=30+2(p q+r q+r p) \\
& -26=2(p q+r q+r p) \\
& p q+r q+r p=-13 \tag{2}\\
& \text { Put value of }(2) \text { in }(1) \\
& 1-2-13-10=-24
\end{align*}
$$

27. (c)
$x+\frac{1}{x}=5 \quad\left(x+\frac{1}{x}\right)^{3}=x^{3}+\frac{1}{x^{3}}+3 x \cdot \frac{1}{x}\left(x+\frac{1}{x}\right)$
$\left(x+\frac{1}{x}\right)^{2}=5^{2} \quad 5^{3}=x^{3}+\frac{1}{x^{3}}+3(5)$
$x^{2}+\frac{1}{x^{2}}=23 \quad 125=x^{3}+\frac{1}{x^{3}}+15$
$x^{3}+\frac{1}{x^{3}}=110$
$\left(x^{3}+\frac{1}{x^{3}}\right)-5\left(x^{2}+\frac{1}{x^{2}}\right)+\left(x+\frac{1}{x}\right)$
$=110-5(23)+5$
$=110-115+5=0$
28. (b)
$x=\sqrt{21}-\sqrt{20}=(\sqrt{21}-\sqrt{20}) \times\left(\frac{\sqrt{21}+\sqrt{20}}{\sqrt{21}+\sqrt{20}}\right)=\frac{1}{\sqrt{21}+\sqrt{20}}$
$y=\sqrt{18}-\sqrt{17} \times \frac{\sqrt{18}+\sqrt{17}}{\sqrt{18}+\sqrt{17}}=\frac{1}{\sqrt{18}+\sqrt{17}}$
Now x and y have same numerator but y denominator is less compare to x.
So $y>x$.
29. (b)
$\mathrm{s}=54 \mathrm{~km} / \mathrm{hr}$.
$\mathrm{t}=20 \mathrm{sec}$
$\ell_{t}=\frac{54 \times 5}{18} \times 20=300 \mathrm{~m}$
30. (d)
$a+b+c+d=4$
$\frac{1}{(1-a)(1-b)(1-c)}+\frac{1}{(1-b)(1-c)(1-d)}+\frac{1}{(1-c)(1-d)(1-a)}+\frac{1}{(1-a)(1-b)(1-d)}=?$
$\frac{1-d}{(1-a)(1-b)(1-c)(1-d)}+\frac{1-a}{(1-a)(1-b)(1-c)(1-d)}+\frac{1-b}{(1-a)(1-b)(1-c)(1-d)}+\frac{1-c}{(1-a)(1-b)(1-c)(1-d)}$
$=\frac{4-(a+b+c+d)}{(1-a)(1-b)(1-c)(1-d)}=\frac{4-4}{(1-a)(1-b)(1-c)(1-d)}=\frac{0}{(1-a)(1-b)(1-c)(1-d)}=0$.
31. (c)
$\frac{7^{2017}}{25}=\frac{7 \cdot 7^{2016}}{25}=\frac{7(49)^{1008}}{25}=\frac{7(50-1)^{1008}}{25}$
$\frac{7\left(50 \mathrm{k}+(-1)^{1008}\right)}{25}=\frac{350 \mathrm{k}+7}{25}$
Remainder $=7$.
32. (Bonus)
$\Delta=\frac{a b c}{4 R}$
$s=\frac{30+36+30}{2}=48$
$\Delta=\sqrt{48 \times 18 \times 18 \times 12}$
$=18 \times 12 \times 2$
$=432$
$R=\frac{a b c}{4 \Delta}=\frac{30 \times 36 \times 30}{4 \times 432}=\frac{32400}{1728}=18.75$.
33. (c)

CI	f	$\mathrm{CM}(\mathrm{x})$	$\mathrm{f} . \mathrm{x}$
$0-10$	4	5	20
$10-20$	6	15	90
$20-30$	8	25	200
$30-40$	10	35	350
$40-50$	12	45	540

$\Sigma \mathrm{f}=40 \quad \Sigma \mathrm{fx}=1200$
$\overline{\mathrm{x}}=\frac{\Sigma \mathrm{fx}}{\Sigma \mathrm{f}}=\frac{1200}{40}=30$
34. (c)
$x^{2}-3 x+2$
$x^{2}-2 x-x+2$
$x(x-2)-1(x-1)$
$(x-2)(x-1)$
$(x-2)$ is factor of $x^{4}-p x^{2}+q$
(2) ${ }^{4}-p(2)^{2}+q=0$
$16-4 p+q=0$
$4 p-q=16$
$(x-1)$ is factor of $x^{4}-p x^{2}+q$
$(1)^{4}-p+q=0$
$p-q=1$
(2)

Solving (1) \& (2)
$p=5$
$q=4$
35. (c)
$501,503,505, \ldots \ldots \ldots \ldots \ldots \ldots, 599$
$a=501$
$\mathrm{d}=2$
$a_{n}=a+(n-1) d$
$599=501+(n-1) 2$
$98=(n-1) 2$
$49=n-1$
$\mathrm{n}=50$
$S=\frac{50}{2}(501+599)$
$S=27,500$
36. (a)

Area of $\Delta=\frac{1}{2} \mathrm{AB} \times \mathrm{CF}=\frac{1}{2} \mathrm{AC} \times \mathrm{BE}$
Area of $\Delta^{2}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{CF} \times \frac{1}{2} \mathrm{AC} \times \mathrm{BE}$
$=\frac{1}{4} \times 172.8 \times 108.3=4678.56$
Area of $\Delta=68.4$
$\frac{1}{2} B C \times A D=68.4$
$B C \times A D=68.4 \times 2=136.8$
37. (d)
$a+b=13$
$a^{3}+b^{3}=1066$
$a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$
$1066=13^{3}-3 a b(13)$
$39 a b=2197-1066$
$39 a b=1131$
$a b=29$.
38. (b)

By Ptolemy Theorem
$A D \times B C+A B \times D C=A C \times B D$
$85 \times 104+204 \times 195=A C \times 221$
$8840+39780=A C \times 221$
$48,620=A C \times 221$
$A C=220$.
39. (c)

15 Aug 2017 - Tuesday
15 Aug 2023 - Tuesday
So after 6 years Independence day will again come on Tuesday.
40. (a)
$\left(x^{2}-b x\right)(m+1)=(a x-c)(m-1)$
$(m+1) x^{2}-b(m+1) x=(m-1) a x-c(m-1)$
$(m+1) x^{2}-b(m+1) x-(m-1) a x+c(m-1)$
$(m+1) x^{2}+(-b m-b-a m+a) x+c(m-1)$
for equal and opposite root coefficient of x should be zero.
$\therefore \quad-b m-b-a m+a=0$
$a-b=m(a+b)$
$m=\frac{a-b}{a+b}$.
42. (c)

Let the percentage abundance of isotope ${ }_{35}^{79} \mathrm{X}$ is x_{1}
and percentage abundance of isotope ${ }_{35}^{82} \mathrm{X}$ is $100-\mathrm{x}_{1}$
$\therefore \quad$ Average atomic mass is 80 u
So $\quad 80=\frac{79 \times x_{1}+82\left(100-x_{1}\right)}{100}$
$\Rightarrow \quad{ }_{35}^{79} \mathrm{X}=66.67 \%$
${ }_{35}^{82} X=33 \cdot 34 \%$
43. (c)

Duralumin is an alloy of aluminium containing copper, manganese and magnesium.
It is used for making the parts of air crafts as it is light in weight.
44. (b)

Millimoles of $\mathrm{HCl}=0 \cdot 1 \times 10=1$
Millimoles of $\mathrm{NaOH}=0.067 \times 15=1.005$
So, concentration of $\mathrm{OH}^{-}=\frac{1 \cdot 005-1}{25}$
$\Rightarrow \quad\left[\mathrm{OH}^{-}\right]=2 \times 10^{-4}$
$\mathrm{pOH}=4-\log 2=3 \cdot 7$
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pH}=14-\mathrm{pOH}=14-3 \cdot 7=10.3$
The pH range of $8-11$ is of weak base \& it gives pale blue colour.
45. (b)

Moles of $\mathrm{HCl}=\frac{73}{36.5}=2$ mole
Molarity of HCl solution is 2 M
$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
46 g Na metal gives 80 g NaOH
$\therefore 0.46 \mathrm{~g}$ is gives 2×10^{-2} moles of NaOH
$\mathrm{M}_{\mathrm{HCl}} \times \mathrm{V}_{\mathrm{HCl}}=\mathrm{M}_{\mathrm{NaOH}} \times \mathrm{V}_{\mathrm{NaOH}}$
$2 \times \mathrm{V}_{\mathrm{HCl}}=2 \times 10^{-2} \times 1000 \mathrm{ml}$
$\mathrm{V}_{\mathrm{HCI}}=10^{-2} \mathrm{~L}=10 \mathrm{ml}$
46. (b)

Assume
Caustic soda (NaOH) is a monoacidic base
Calcium hydroxide $\mathrm{Ca}(\mathrm{OH})_{2}$ is a diacidic base
Hydrated alumina $\mathrm{Al}(\mathrm{OH})_{3}$ is a triacidic base
\therefore For Neutralization with one equivalent of phosphoric acid (tribasic acid) each time
(Moles base $\times($ Valnecy factor) base $=$ Equivalent of acid)
The ratio of moles of bases required will be
$\mathrm{NaOH}: \mathrm{Ca}(\mathrm{OH})_{2}: \mathrm{Al}(\mathrm{OH})_{3}$
1:0.5:0.33
47. (d)

In case (i) CO_{2} - Acidic oxide, MgO - basic oxide, $\mathrm{N}_{2} \mathrm{O}$ - neutral oxide
$\mathrm{H}_{2} \mathrm{O}$ - Generally it is neutral but sometimes it shows amphoteric behaviour
So case (i) is correct
In case (ii) $\quad \mathrm{SO}_{2}$ - acidic oxide, NO - neutral oxide, CO - neutral oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$ - amphoteric oxide
So case (ii) is wrong
In case (iii) $\mathrm{P}_{2} \mathrm{O}_{5}$ - acidic oxide, ZnO - Amphoteric oxide, NO - neutral oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$ - Amphoteric oxide
So case (iii) is wrong
In case (iv) SO_{3} - Acidic oxide, CaO - basic oxide, $\mathrm{N}_{2} \mathrm{O}$ - Neutral oxide, PbO - Amphoteric oxide
So case (iv) is correct
So correct cases are (i) \& (iv)
48. (a)

Weight of magnesium $=4 \mathrm{~g}$ (Given)
Number of atom in magnesium $=\frac{4}{24} \times N_{A}$
Weight of sulphur $=4 \mathrm{~g}$ (Given)
Number of atom in sulphur $=\frac{4}{32} \times \mathrm{N}_{\mathrm{A}}$
Ratio of atom in sulphur to magnesium

$$
=\frac{4 \mathrm{~N}_{\mathrm{A}}}{32} \times \frac{24}{4 \mathrm{~N}_{\mathrm{A}}}=\frac{3}{4}
$$

49. (c)

Biology specimens are preserved in formaline solution. Formaline is ($37-40 \%$) aq. Solution of Formaldehyde or Methanal (HCHO)
50. (d)

Tooth decay starts when pH of mouth is lower than 5.5 . Tooth enamel is made up of calcium phosphate which does not dissolve in water, but get corroded when pH in mouth tooth is below 5.5.
51. (c)

Case II Zinc is less reactive than aluminium so it will not displace aluminium.
(I) $\mathrm{Zn}+\mathrm{CuSO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Cu}$
(II) $\mathrm{Zn}+\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow$ No reaction
(III) $\mathrm{Zn}+\mathrm{AgNO}_{3} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)+\mathrm{Ag}$
(IV) $\mathrm{Zn}+\mathrm{PbNO}_{3} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Pb}$

As per question reaction (III) will not occur, but as zinc is more reactive than silver so zinc can displace silver.
52. (c)

Last discovered element in halogens is astatine $Z=85$ (it is a $6^{\text {th }}$ period element)
The difference between $6^{\text {th }} \& 7^{\text {th }}$ period element is of 32 .
So next halogen element will have atomic number $(Z)=117$
53. (c)

As per Gay lussac's law :
At particular temperature \& pressure both $\mathrm{SO}_{2} \& \mathrm{O}_{2}$ occupy same volume \& having same number of molecules.
Suppose both contain same no. of moles ' x ' then the ratio of their masses will be $\mathrm{SO}_{2}: \mathrm{O}_{2}$
$\mathrm{X} \times 64 \mathrm{~g}=\mathrm{x} \times 32 \mathrm{~g}$
2:1
So the mass of SO_{2} in flask will be twice that of oxygen.
54. (b)

During meteorite shower temperature of water body increases as a result pH decreases
$\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
as the temp increases, dissociation of water also increases. The value of K_{w} increases \& pH decreases.
55. (a)

If $Z=10$
Electronic configuration will be $=2,8$
Outermost shell of the element is completely filled so its valency is zero.
56. (c)

Ketone is $R-\stackrel{\text { U }}{\mathrm{C}}-\mathrm{R}[\mathrm{R}=$ alkyl group $]$
$\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$

57. (c)
(C) $\mathrm{Cu}_{(\mathrm{s})}+\underset{\text { Colourless }}{\mathrm{AgNO}_{3(a)}} \rightarrow \underset{\substack{\text { Cu } \\ \text { Bluish green }}}{\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(a)}}+\mathrm{Ag}_{(\mathrm{s})}$

Final observation will be
(i) Solution turns blue
(ii) Silver deposite on the copper
58. (d)

As this is open vessel so pressure and Volume is constant.
according to ideal gas equation
$\mathrm{PV}=\mathrm{nRT}$
$\mathrm{n} \propto \frac{1}{\text { Temperature (Kelvin) }}$
$n_{1} \mathrm{~T}_{1}=\mathrm{n}_{2} \mathrm{~T}_{2}$
assume $\mathrm{n}_{1}=1$ mole, $\mathrm{n}_{2}=$ moles remain in vessel
then $\mathrm{n}_{2}=\frac{3}{5}$ mole $\quad\left(\because\right.$ as $\frac{2}{5}$ moles of air expelled out $)$
$\mathrm{T}_{1}=27^{\circ} \mathrm{C}+273=300 \mathrm{~K}$
$1 \times 300=\frac{3}{5} \times T_{2}$
$\mathrm{T}_{2}=\frac{300 \times 5}{3}=500 \mathrm{~K}$
59. (b)
$\mathrm{NaHCO}_{3} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2} \uparrow+\mathrm{H}_{2} \mathrm{O}$
white solid Residue
When residual white powder $\mathrm{Na}_{2} \mathrm{CO}_{3}$ dissolved in water it will give alkaline solution
$\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-}$
When we add this solution in Alum Sol^{n} white gelatinous ppt of $\mathrm{Al}(\mathrm{OH})_{3}$ is obtained.
60. (a)

Number of moles of cane sugar $=\frac{1.71}{342}$
Number of carbon atoms present in 1 mole cane sugar is $12 \mathrm{~N}_{\mathrm{A}}$
\therefore Total number of carbon atoms consumed through sugar in the tea is
$12 \times \frac{1.71}{342} \times N_{A}=3.66 \times 10^{22}$
61. (d)
$\Delta t=0.2$ sec.
For block (a) displacement is same i.e $=4$ unit, so acceleration is zero
For block (b) displacement is 6 unit same so acceleration is zero.
62. (b) I and III

O to A velocity is constant i.e. V, also from A to B velocity is constant but $\theta_{2}<\theta_{1}$ so velocity is less at $A B$

63. (c) From the definition of power of Accommodation.
64. (d) Constant downward force of gravity only.
65. (b)

$\therefore \mu=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\frac{\sin \mathrm{i}}{\sin \mathrm{r}}$
μ_{A} is maximum and velocity is minimum.
66. (c)
$a_{0}<a_{t}, b_{0}<b_{t}$, density will decrease because its volume will increase.
67. (d)

By flemings left hand rule. α particle will turn towards left and electron will turn towards right.
68. (d)

It is evaporation of water from blanket by the heat of the box.
69. (c)

Time is 50 sec . and speed increases from 0 to $288 \mathrm{~km} / \mathrm{hr}$.
acceleration is $\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}$
$=\frac{288 \times \frac{5}{18}-0}{50}=\frac{80}{50}=\frac{8}{5} \mathrm{~m} / \mathrm{sec}^{2}$
$v^{2}=u^{2}+2 a s$
$80^{2}=0^{2}+2 \times \frac{8}{5} \times s$
$80 \times 80=\frac{16}{5} s$
$s=\frac{80 \times 80 \times 5}{16}=2000 \mathrm{~m}$
70. (a)

Electric Potential energy $=\frac{K Q_{1} Q_{2}}{R}$
As R decreases so electric potential energy increases.
71. (d)

According to newton's III law of motion for every action there is equal and opposite reaction
72. (d)

According to equation of continuity
$\mathrm{av}=$ constant
So, $a_{1} v_{1}=a_{2} v_{2}$
73. (c)

Since the mirror is inside the water liquid image will be formed at focus i.e. 50 cm above mirror.
74. (b)

Resultant amplitude is given by
$\mathrm{A}=\sqrt{\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}+2 \mathrm{a}, \mathrm{a}_{2} \cos \delta}$
$\delta=180^{\circ}$
$A=\sqrt{a^{2}+(2 a)^{2}+2 \times a \times 2 a \cos 180^{\circ}}$

$=\sqrt{a^{2}+4 a^{2}-4 a^{2}}=a$
75. (c)

$I=\frac{120}{40}=3 \mathrm{~A}$
Current flowing from N to $\mathrm{K}=\mathrm{I} / 3$
Current flowing from N to K is $3 / 3=1 \mathrm{~A}$
76. (b)

On the chair there will be a downward force of gravity and an upward force exerted by the flow.
77. (a)

By lenz law
78. (b)

Let the volume of bulb of hydrometer is V and area of cross section of rod is A
For water $(V+20 A) d_{w} g=m g$
For liquid 1

$$
\begin{equation*}
(\mathrm{V}+0 \mathrm{O}) 1.4 \mathrm{~g}=\mathrm{mg} \tag{1}
\end{equation*}
$$

For liquid 2
$(V+10 A) d g=m g$
From equation (1) and 2
$(\mathrm{V}+20 \mathrm{~A})=\mathrm{V} \times 1.4$
$20 \mathrm{~A}=0.4 \mathrm{~V}$
$\mathrm{V}=50 \mathrm{~A}$
Equation in (1) and (3)
$(V+20 A) \times 1=(V+10 A) d$
$50 \mathrm{~A}+20 \mathrm{~A}=(50 \mathrm{~A}+10 \mathrm{~A}) \mathrm{d}$
$\mathrm{d}=\frac{70}{60}=\frac{7}{6}=1.17 \mathrm{~g} / \mathrm{cm}^{3}$
79. (b)

In \triangle COB
$70+70+x=180^{\circ}$
$x=40^{\circ}$
$\angle \theta=90^{\circ}-40^{\circ}$
So $\theta=50^{\circ}$
80. (b)

If $R_{1} \& R_{2}$ are connected in series then $S=R_{1}+R_{2}$
If $R_{1} \& R_{2}$ are connected in parallel then $P=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
$\frac{S}{P}=\frac{R_{1}+R_{2}}{\frac{R_{1} R_{2}}{R_{1}+R_{2}}}=\frac{\left(R_{1}+R_{2}\right)^{2}}{R_{1} R_{2}}$
$\frac{S}{P}=\frac{R_{1}^{2}+R_{2}^{2}+2 R_{1} R_{2}}{R_{1} R_{2}}=\frac{R_{1}}{R_{1} R_{2}}+\frac{R_{2}}{R_{1} R_{2}}+\frac{2 R_{1} R_{2}}{R_{1} R_{2}}=\frac{R_{1}}{R_{2}}+\frac{R_{2}}{R_{1}}+2$
If n is minimum then $R_{1}=R_{2}$
So, $(\mathrm{n})_{\text {min }}=\frac{\mathrm{S}}{\mathrm{P}}=2+2=4$

54 Ars WORKSHOP

for the Preparation of

m 1 Junior Science Olympiad

Eligibility: NSEJS Qualified Students
Starting From: 25 December 2017
Registration Charges: ₹ 200

CALL: 0744-6635568 | Wehsite: www.pccp.resonance.ac.in

ResロாコпСe® Educating for better tomorrow

Corporate Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Toll Free : | 18002585555 | CIN: U80302RJ2007PTC024029

