Pre-foundation Career Care Programmes (PCCP) Division

INJSO (STAGE-II)-2017

HINTS \& SOLUTIONS

ANSWER KEY

Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	d	d	c	d	c	c	d	b	a	c	a	d	a	a	d
Ques.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	b	Bonus	d	b	b	a	b	c	d	a	a	b	c	b	c

1. $\mathrm{mgh}=\frac{1}{2} \mathrm{kx}^{2}$
$5 \times 10 \times 1=\frac{1}{2} k \times 0.125 \times 0.125$
$50=\frac{1}{2} \mathrm{k} \cdot 0.125 \times 0.125$
$\frac{100}{0.125 \times 0.125}=k$
$\mathrm{k}=100 \times 64 \mathrm{~N} / \mathrm{m}$
$\mathrm{k}=\frac{6400}{1000} \frac{\mathrm{~N}}{\mathrm{~m}}$
$\mathrm{k}=6.4 \frac{\mathrm{~N}}{\mathrm{~mm}}$.
2. (d)
3. (c)

A block dot has mass $=1$ femto gram $=10^{-15}$ gram dot is made up of carbon only
So, $\quad 12 \mathrm{~g}$ carbon contains $=\mathrm{N}_{\mathrm{A}}$ atoms
1 g carbon contain $=\frac{\mathrm{N}_{\mathrm{A}}}{12}$ atoms
$10^{-15} \mathrm{~g}$ carbon contain $=\frac{\mathrm{N}_{\mathrm{A}}}{12} \times 10^{-15}=\frac{6.023 \times 10^{23} \times 10^{-15}}{12}$
$\left(N_{A}=6.023 \times 10^{23}\right)=5 \times 10^{7}$. Number of carbon atoms.
4. (d)

Beryllium

After removal of two electrons the electronic configuration of the element are
$\mathrm{B}^{+2} \rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{1}$
$\mathrm{Mg}^{+2} \rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$
$\mathrm{Al}^{+2} \rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{1}$
$\mathrm{Be}^{+2} \rightarrow 1 \mathrm{~s}^{2}$
As the configuration of Be^{+2} is $1 \mathrm{~s}^{2}$ which is more stable than others and requires more ionisation energy than others.
So, the third ionisation energy for Beryllium is highest
Resonance®
Educating for better tomorrow

6．（c）
$V_{\text {im }}=-V_{\text {om }}$
$V_{i m}-V_{m}=-\left(V_{o}-V_{m}\right)$
Volocity of image w．r．t．obser along x－axis
$=-2(10 \cos 60+5 \cos 30)$
$=-2\left(10 \times \frac{1}{2}+5 \times \frac{\sqrt{3}}{2}\right)$
$=-2\left(5+\frac{5}{2} \sqrt{3}\right)$

$=-\frac{2}{2}(10+5 \sqrt{3})$
$=-(10+5 \sqrt{3})$
$=-5(2+\sqrt{3})$
Velocity of image w．r．t．obser along y－axis $=0$
8．（b）
$u=72 \times \frac{5}{18}=20 \mathrm{~m} / \mathrm{s}$
$v=0$
$v=u+a t$
$a=4 \mathrm{~m} / \mathrm{s}^{2}$
$o=20-4 t$
a
$t=5$
$s=4 t+\frac{1}{2} a t^{2}$
$s=20 \times 5-\frac{1}{2} \times 4^{2} \times 25$
$\mathrm{s}=50 \mathrm{~m}$ ．
Total distance is 52 m ．
9．（a）
$2 \mathrm{CO}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$
60 ml of CO react with 30 ml of O_{2}
Volume of CO_{2} formed $=60 \mathrm{ml}$
remaining volume of $\mathrm{O}_{2}=10 \mathrm{ml}$
$\therefore \quad$ Mixture A contain $60 \mathrm{ml} \mathrm{CO}_{2}$ and 10 ml of O_{2}
Total volume of $A=70 \mathrm{ml}$
After passing of A in KOH solution as only CO_{2} will react with aq． KOH ．
Volume remaining $=(70-60) \mathrm{ml}=10 \mathrm{ml}$
Volume of＇B＇$=10 \mathrm{ml}$

10．（c）
$\mathrm{f}=6 \mathrm{~cm}$
$\mathrm{u}_{1}=9 \mathrm{~cm}, \mathrm{v}_{1}=$ ？
$\mathrm{u}_{2}=15 \mathrm{~cm}, \mathrm{v}_{2}=$ ？
$\frac{1}{f}=\frac{1}{v_{1}}+\frac{1}{u_{1}}$
$\frac{1}{v_{1}}=\frac{1}{6}+\frac{1}{9}=\frac{3+2}{18}$
$\mathrm{v}_{1}=\frac{18}{5} \mathrm{~cm}$

If $u=-15 \mathrm{~cm}$
$\frac{1}{f}=\frac{1}{v_{2}}+\frac{1}{u_{2}}$
$\frac{1}{v_{2}}=\frac{1}{6}+\frac{1}{15}=\frac{5+2}{30}=\frac{7}{30}$
$v_{2}=\frac{30}{7}$
$v_{2}-v_{1}=\frac{30}{7}-\frac{18}{5}=\frac{150-126}{35}=\frac{24}{35} \mathrm{~cm} \simeq 0.7 \mathrm{~cm}$
11．（a）
$\mathrm{Be}^{2+}<\mathrm{Li}^{+}<\mathrm{F}^{-}<\mathrm{O}^{2-}$
electronic configuration
$\mathrm{Be} \rightarrow 1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}$
$\mathrm{Be}^{2+} \rightarrow 1 \mathrm{~s}^{2}$
$\mathrm{Li} \rightarrow 1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{1}$
$\mathrm{Li}^{+} \rightarrow 1 \mathrm{~s}^{2}$
$\mathrm{F} \rightarrow 1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{5}$
$\mathrm{F}^{-} \rightarrow 1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{6}$
$\mathrm{O} \rightarrow 1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{3}, 2 \mathrm{p}^{4}$
$\mathrm{O}^{2-} \rightarrow 1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{6}$

As the charge on anion increases，ionic radii increases．
As the charge on cation increases，ionic radii decreases．
12．（d）

For $\Delta \mathrm{OM}_{2} \mathrm{D}$ and $\Delta \mathrm{M}_{2} \mathrm{QR}$
$\frac{\mathrm{d}}{2 \mathrm{~d}}=\frac{\mathrm{L} / 2}{\mathrm{x}} \Rightarrow \mathrm{x}=\mathrm{L}$
So，total distance $=x+L+x=L+L+L=3 L$ ．
15．（d）
Molecular wt．of monomer $=48 \mathrm{gm}$
so molecular wt．of dimer will be 98 gm
In experiment，Mass of compound $=96 \mathrm{gm}$
Volume of vessel $=33.6 \mathrm{~L}$
Temperature $=273^{\circ} \mathrm{C} \rightarrow 273+273=546 \mathrm{~K}$
If compound exist as a dimer then mass extent of mass by 50% of $w t$ ．
so $\quad 50 \%$ of $96=48 \mathrm{gm}$
Now weight $=96+48=144 \mathrm{gm}$
$\mathrm{Pv}=\mathrm{nRT}$
$P \times 33.6=\frac{144}{96} \times 0.082 \times 546=1.99 \simeq 2 \mathrm{~atm}$.
16. (b)
$y=a \sin (w t-k x)$ when wave is moving towards $+x$ axes
$\frac{d y}{d t}=v=a w \cos (w t-k x)$
of $y=$ max then $\sin (w t-k x)=1 \Rightarrow(w t-k x)=90^{\circ}$
so when $y=$ max then velocity will be zero
At, F, L and R K.E. will be max
At G, velocity s negative
$\mathrm{V}=\mathrm{aw} \cos (\pi+\mathrm{wt} .-\mathrm{kx})=-\mathrm{aw} \cos \mathrm{wt}$
so wave is moving towards $+x$ axis
17.

$\mathrm{R}_{\mathrm{eq}}=\frac{2 \times \frac{1}{2}}{2+\frac{1}{2}}=\frac{1}{5}=\frac{2}{5}$.
19. (b)
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3_{(\mathrm{aq})}}+3 \mathrm{Ba}(\mathrm{OH})_{2_{(a \mathrm{aq})}} \rightarrow 2 \mathrm{Fe}(\mathrm{OH})_{3_{(\mathrm{s})}}+3 \mathrm{BaSO}_{4_{(\mathrm{s})}}$

$$
\begin{array}{ll}
\text { ppt } & \text { ppt }
\end{array}
$$

Given Ferric ions $=0.140 \mathrm{gm}=\frac{0.140}{56}=0.0025$ moles Fe $^{3+}$ ions
$\because \quad$ moles of pure ferric sulphate taken $=0.00125$ moles
As per the reaction $\mathrm{Fe}(\mathrm{OH})_{3}$ and BaSO_{4} both will precipitate out.
So, total amount of precipitate $=$ amount of $\mathrm{Fe}(\mathrm{OH})_{3}+$ amount of BaSO_{4}
Amount of $\mathrm{Fe}\left(\mathrm{OH}_{3}\right)=2 \times 0.00125 \times 107=0.2675 \mathrm{gm}$
Amount of $\mathrm{BaSO}_{4}=3 \times 0.00125 \times 233=0.87375 \mathrm{gm}$
Total weight of precipitate $=\mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{BaSO}_{4}=0.2675+0.8737=1.14 \mathrm{gm}$.
20. (b)
(i) Phenolphthalein $+\mathrm{NaCl} \rightarrow \mathrm{No}$ reaction.

$$
\begin{array}{ll}
\mathbf{P} & \mathbf{Q}
\end{array}
$$

(ii) Phenolphthalein $+\mathrm{CaCO}_{3} \rightarrow$ Alkaline medium $\mathrm{P} \quad \mathrm{R} \quad$ (Dark Pink Colour)
(iii) $\mathrm{CaCO}_{3}+2 \mathrm{CH}_{3} \mathrm{COOH} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}+\mathrm{CO}_{2} \uparrow+2 \mathrm{H}_{2} \mathrm{O}$
R S
effervescence
$P=$ Phenolphthalein
$\mathrm{Q}=\mathrm{NaCl}$
$\mathrm{R}=\mathrm{CaCO}_{3}$
$\mathrm{S}=\mathrm{CH}_{3} \mathrm{COOH}$.
22. (b)

1. (II) $2 . \quad$ (I)
2. (IV)
3. (I)
4. cinnabar-oxidation

$$
\mathrm{HgS}+\mathrm{O}_{2} \rightarrow \mathrm{Hg}+\mathrm{SO}_{2}
$$

2. Zinc blend - oxidation and reduction $2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$
$\mathrm{ZnO}+\mathrm{C} \rightarrow \mathrm{Zn}+\mathrm{CO}$
3. Hematite-reduction

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}
$$

4. Galena-oxidation and reduction
$2 \mathrm{PbS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2}$ $\mathrm{PbO}+\mathrm{CO} \rightarrow \mathrm{Pb}+\mathrm{CO}_{2}$
5. Mole of nitrogen gas $=\frac{22}{28}=0.78$

Mole of oxygen gas $=\frac{44}{32}=1.3$
Mole of CO_{2} gas $=\frac{38}{44}=0.86$
at constant V and T
$\mathrm{P} \propto \mathrm{n}$
$\mathrm{n}=$ number of mole
so $\mathrm{P}_{\mathrm{N}_{2}}<\mathrm{P}_{\mathrm{CO}_{2}}<\mathrm{P}_{\mathrm{O}_{2}}$.
30.(iii) $\mathrm{Cu}+$ dil. $\mathrm{HCl} \rightarrow \mathrm{No}$ reaction

Copper does not liberate H_{2} from dilute hydro chloric acid because only those metals which are having standard reduction potentials lower than that of hydrogen react with non-oxidising agent like HCl and displaces hydrogen from them.
Copper has higher reduction potential than hydrogen.
31. (a) (I)

Weight of individual $=70 \mathrm{~kg}$
total fluid $=70 \times \frac{70}{100}=49 \mathrm{~kg}$
blood $8 \%=\frac{49 \times 8}{100}=3.92 \mathrm{~kg}$
Density of blood=1060g/l = $\ln 1.06 \mathrm{~kg}$
volume of blood $=\frac{3.92}{1.06}=3.69$
Ans $=3.69 \ell=3.7 \ell$
(II) Volume of Blood $\rightarrow 3.7 \ell=3.7 \times 10^{6} \mathrm{~mm}^{3}$

Number of $W B C=7000 / \mathrm{mm}^{3}$,
Number of WBc in $3.7 \times 10^{6} \times 7000=2.59 \times 10^{10}$
Number of DNA in single WBC $=46$
Number of DNA molecule in $2.59 \times 10^{10} \mathrm{WBC}$
$=2.59 \times 10^{10} \times 46=1.19 \times 10^{12}$
(III) Blood -3.92
plasma $=\frac{3.92 \times 55}{100} \times \frac{7}{100} \times \frac{58}{100}$
$=0.0875 \mathrm{~kg}$ Albumin
moles $=\frac{0.0875}{66}=1.3 \times 10^{-3}$ moles
31. (b)

Label
1.
2.
3.
4.

Composition of Blood
Direction of Flow oxygenated Deoxygenated oxygenated Deoxygenated

Away

Away towards
towards
32. (a)
(i) $\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{Cl}_{2}+3 \mathrm{C} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{CO}$
(ii) $2\left[\mathrm{Al}_{2} \mathrm{O}_{3} \cdot x \mathrm{SiO}_{2}\right]+6 \mathrm{FeS}_{2}+21 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{FeSO}_{4}+2 \mathrm{SiO}_{2}$
(b)

Given mix of $\mathrm{NaHCO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{NaCl}=3 \mathrm{gm}$
On heating NaHCO_{3} undergoes decomposition \& gives CO_{2}
$2 \mathrm{NaHCO}_{3} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$22400 \mathrm{ml} \mathrm{O}_{2}$ produced by $=2$ moles of NaHCO_{3}
$56 \mathrm{ml} \mathrm{CO}_{2}$ produced by $=\frac{2 \times 56}{22400}=5 \times 10^{-3} \mathrm{moles}$
Amount of NaHCO_{3} in mix $=5 \times 10^{-3} \times 84$
$=0.42 \mathrm{gm} \mathrm{NaHCO} 3$
During neutralisation $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} will react with HCl
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
On neutralisation
equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}+$ equivalent of $\mathrm{NaHCO}_{3}=$ eq. of HCl
$(x \times 2)+\left(5 \times 10^{-3}\right)=\frac{30.5 \times 1}{1000}$
$x \times 2=30.5 \times 10^{-3}-5 \times 10^{-3}$
$x=12.75 \times 10^{-3}$ moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
Amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}=12.75 \times 10^{-3} \times 106$
$=1.351 \mathrm{gm} \mathrm{Na}_{2} \mathrm{CO}_{3}$
Amount of $\mathrm{NaCl}=$ Total amount of mixture $-\left(\right.$ amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}+$ amount of $\left.\mathrm{NaHCO}_{3}\right)$

$$
=3-(1.351+0.42 \mathrm{gm})
$$

$=1.228 \mathrm{gm} \mathrm{NaCl}$
$\%$ of NaCl in mixture $=\frac{1.228}{3} \times 100=40.9 \%$
33. (i) 1 L solution contain $=2 \mathrm{mg} \mathrm{CaSO}_{4}$

1000 L contain $=2 \mathrm{gm} \mathrm{CaSO}_{4}$
Sample - 1
moles of $\mathrm{CaSO}_{4}+$ mole of $\mathrm{MgCO}_{3}=$ moles of CaCO_{3}

$$
\frac{2}{136}+\frac{0.5}{95}=\frac{1}{100}
$$

$$
\left(\frac{2}{136}+\frac{0.5}{95}\right) \times 100=1.9 \simeq 2 \mathrm{ppm} .
$$

Sample - 2

1 L solution contain $=3 \mathrm{mg} \mathrm{MgSO}_{4}$ 1000 L solution contain $=3 \mathrm{gm} \mathrm{MgSO}_{4}$ moles of $\mathrm{MgSO}_{4}=$ moles of CaCO_{3}

$$
\frac{3}{120} \times 100=2.5 \mathrm{ppm} .
$$

(ii) Removal of Permanent Hardness

$$
\begin{aligned}
& \mathrm{CaSO}_{4}+\mathrm{CaCl}_{2}+4 \mathrm{NaOH} \longrightarrow 2 \mathrm{Ca}(\mathrm{OH})_{2} \downarrow+2 \mathrm{NaCl}+\mathrm{Na}_{2} \mathrm{SO}_{4} \\
& \mathrm{Temporary} \mathrm{Hardness}^{\longrightarrow} \text { acatin ppt } \\
& \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{NaOH} \longrightarrow \underset{\text { ppt. }}{\mathrm{Ca}(\mathrm{OH})_{2}} \downarrow+2 \mathrm{NaHCO}_{3}
\end{aligned}
$$

34. (a) As per given data $42000 \mathrm{~J} / \mathrm{mol}$
$=\frac{42000}{4.2 \times 18} \times \frac{\mathrm{cal}}{\mathrm{gm}}=555.55$.
$\frac{1000}{555.55}=\mathrm{m}=18.51 \mathrm{~g}$ of water bond
Man of work left

$$
=2000-18=19982 \mathrm{gm}
$$

(b) Voltage range required

$$
=\frac{1250}{625}=2 \mathrm{~V} \& \frac{1250}{500}=2.5 \mathrm{~V}
$$

For voltage across led $=2 \mathrm{v}$ and across $\mathrm{R}=0.8 \mathrm{v}$
T.D. left $=5-2.8=2.2 \mathrm{v}$
$2.2 \mathrm{v} \rightarrow 20 \mathrm{~mA}$.
$R=110 \Omega$
For voltage across LED $=2.5 \mathrm{v}$ and across $\mathrm{R}=0.8 \mathrm{v}$
P.D. left $=5-3.3=1.7 \mathrm{v}$
$1.7 \mathrm{v} \rightarrow 20 \mathrm{~mA}$
$\mathrm{R}=85 \Omega$
Range will be 85Ω to 110Ω.
35. (i)-c
(ii)-b
(iii)-c
(iv)-a
(v) Red round eyes
b- yes
c- $9: 3: 3: 1$
36. (a)

Case-I

$i\left(\frac{8 R}{8+R}+6\right)=5$
$i\left(\frac{8 R+48+6 R}{8+R}\right)=5$
$8 i_{1}=R\left(i-i_{1}\right)$
$(8+R) i_{1}=R i$
$\mathrm{i}_{1}=\frac{\mathrm{Ri}}{8+\mathrm{R}}$
$\frac{1}{4}=\frac{R}{8+R}, \frac{5(8+R)}{14 R+48}$
$14 R+48=20 R \Rightarrow R=8 \Omega$

Case - II

$$
i_{1}=\frac{5}{20}=\frac{1}{4} .
$$

36. (b)

Between A and C effective resistance $=\frac{3}{2} R$
Now $\quad V=i R$

$$
3.6=\frac{3600 \times 10^{-3}}{24} \mathrm{R}
$$

$\therefore \quad \mathrm{R}=24$.
Now $\quad \frac{3}{2} R=24$.
$\therefore \quad \mathrm{R}=16$
Now between A and $B R_{\text {eff }}=\frac{5}{4} R$
i.e., $=202$
$\therefore \quad$ Time required
$3.6=\frac{3600 \times 10^{-3}}{4 \mathrm{t}} \times 20 \mathrm{hr}$.
37.A (i) - C
(ii) -a
(iii) - a
(iv) -b
37.B
(i) -c
(ii) - F T T F F
38. (b)
$V=\sqrt{\frac{T}{\lambda}}$
$\lambda=$ linear density as mass per unit length
$\because \quad$ mass A 7 m wire $=140 \mathrm{~g}$
mass A 1 m wire $=\frac{140}{7} \mathrm{~g}=20 \mathrm{~g}$
$\therefore \quad \lambda=20 \mathrm{~g} / \mathrm{m}=\frac{20}{1000} \mathrm{~kg} / \mathrm{m}$

At 6 m from celing

$\mathrm{T}_{1}=\mathrm{mg}=\lambda \mathrm{g}$
$v_{1}=\sqrt{\frac{T_{1}}{\lambda}}=\sqrt{\frac{\lambda g}{\lambda}}=\sqrt{g}$
$\mathrm{T}_{2}=\mathrm{m}_{2} \mathrm{~g}=2 \lambda \mathrm{~g}$
(a)
$P=1 \mathrm{~atm}$
$\mathrm{v}=1 \mathrm{lit}$.
$\mathrm{w}=2.8 \mathrm{gm}$
$\mathrm{PV}=\mathrm{nRT}$
$1 \times 1=\frac{w}{M_{w}} \times 0.0821 \times 400$
$1=\frac{2.8}{M_{w}} \times 0.0821 \times 400$
$M_{w}=92 \mathrm{gm}$
Given 10.5 gm of C at 1 gm of H
C H
10.51
so ratio of a.w. $=\underbrace{\frac{10.5}{12} \quad \frac{1}{1}}_{\downarrow}$
Multiply by factor (8) to make whole number

\downarrow	\downarrow
0.875×8	1×8
$=7$	$=8$
for $=\mathrm{C}_{7} \mathrm{H}_{8}$.	

$39 . \quad$ (b)
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{I}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Total initial vol. of H_{2} and $\mathrm{O}_{2}=40 \mathrm{ml}$.
At const pressure and temperature conditions.
volume of remaining $\mathrm{H}_{2}=10 \mathrm{ml}$.
$\mathrm{H}_{2} \& \mathrm{O}_{2}$ react in 2:1 molar ratio
there for volume of H_{2} reacted $=20 \mathrm{ml}$.
\& vol. of O_{2} reacted $=10 \mathrm{ml}$.
so, mole $\%$ of H_{2} initially $=\frac{30}{40} \times 100=75 \%$
40. (i)-F T T
(ii)- (i) Chloroplast, (ii) photosynthesis, (iii) decreases, (iv) endosmosis, (v) Higher, (vi) Lower, (vii) increases
(iii)-c
(iv)-a
(v)-c
(vi)-a
41. $\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}+$ Energy

Person inhales 8 litre air per minute
So vol. of air inhales in 3.5 hr
$=3.5 \times 60 \times 8$ litre
$=1680$ litre
Total amount of air inhaled by person $=1680$ litre air contain only 20% oxygen

So amount of oxygen present $=1680 \times \frac{20}{100}=336$ litre oxygen
only 5% of oxygen is consumed by body
So vol. of oxygen consumed $=336 \times \frac{5}{100}=16.80$ litre
Acc to equation
6×22.4 litre oxygen is consumed by 180 gm of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
$\because 16.80$ litre oxygen is consumed by $=\frac{180 \times 16.80}{6 \times 22.4}=22.5 \mathrm{gm}$ glucose
Amount of CO_{2}
6 moles of oxygen gives $=6$ mole of CO_{2}
$\because 6 \times 22.4$ litre $\mathrm{O}_{2}=6 \times 22.4$ litre CO_{2}
$16.8 \mathrm{~L} \mathrm{O}_{2}=16.8 \mathrm{~L} \mathrm{CO}_{2}$
Vol of CO_{2} produced is 16.8 L

Amount of $\mathrm{CO}_{2}=\frac{16.8}{22.4} \times 44=33 \mathrm{gm} \mathrm{CO}_{2}$ ．

42． Mix of $\mathrm{H}_{2} \mathrm{O}+\mathrm{D}_{2} \mathrm{O}=1000 \mathrm{~L}$
amount of $\mathrm{H}_{2} \mathrm{O}=600 \mathrm{~L}=600 \mathrm{~kg}$
amount of $\mathrm{D}_{2} \mathrm{O}=400 \mathrm{~L}=440 \mathrm{~kg}$
$\mathrm{D}_{2} \mathrm{O}_{\left(0^{\circ} \mathrm{C}, \text { solid }\right)} \xrightarrow{\mathrm{q}_{1}} \mathrm{D}_{2} \mathrm{O}_{\left(4^{\circ} \mathrm{C} \text { solid }\right)} \xrightarrow{\mathrm{q}_{2}} \mathrm{D}_{2} \mathrm{O}_{\left(4^{\circ} \mathrm{C}, \ell\right)} \xrightarrow{\mathrm{q}_{3}} \mathrm{D}_{2} \mathrm{O}_{\left(1^{\circ} \mathrm{C}, \ell\right)}$
heat required for $\mathrm{D}_{2} \mathrm{O}=\mathrm{q}_{1}+\mathrm{q}_{2}+\mathrm{q}_{3}$
$\mathrm{H}_{2} \mathrm{O}_{\left(0^{\circ} \mathrm{C}, \text { solid }\right)} \xrightarrow{\mathrm{q}_{4}} \mathrm{H}_{2} \mathrm{O}_{\left(0^{\circ} \mathrm{C}, \ell\right)} \xrightarrow{\mathrm{q}_{5}} \mathrm{H}_{2} \mathrm{O}_{\left(10^{\circ} \mathrm{C}, \ell\right)}$
Heat required for $\mathrm{H}_{2} \mathrm{O}=\mathrm{q}_{4}+\mathrm{q}_{5}$
$\mathrm{q}_{1}=\mathrm{ms} \Delta \mathrm{T}=440 \times x \times 4=1760 x$
$q_{2}=m \times L=440 \times 340=149600 K J$
$\mathrm{q}_{3}=\mathrm{ms} \Delta \mathrm{T}=440 \times 4.25 \times 6=11220 \mathrm{KJ}$
$q_{4}=M \times L=600 \times 330=198000 K J$ ．
$\mathrm{q}_{5}=\mathrm{MS} \Delta \mathrm{T}=600 \times 4.15 \times 10=24900 \mathrm{KJ}$
Total amount of heat required for the mixture $=q_{1}+q_{2}+q_{3}+q_{4}+q_{5}$ $387160=1760 x+149600+11220+198000+24900$
$x=1.95 \mathrm{KJ} / \mathrm{Kg} \mathrm{K}$ ．

