NATIONAL STANDARD EXAMINATION IN JUNIOR SCIENCE NSEJS_STAGE-I (2016-17) PAPER CODE : JS-530

HINTS \& SOLUTIONS

1. When body charged negatively its mass will increase because it wil gain electrons \& vice versa

$M_{A} \quad M_{B}$
© Θ
$M_{A}{ }^{\prime} \quad M_{B}{ }^{\prime}$
$M_{A}{ }^{\prime}$ is less than M_{B}
Therefore

$$
\begin{aligned}
& M_{A}^{\prime}=M_{A}-M_{O} \\
& M_{B}^{\prime \prime}=M_{B}+M_{O}
\end{aligned}
$$

M_{0} - mass of electron
2. $\sqrt{n+\sqrt{n+\sqrt{n}}} \ldots \ldots \ldots=x$
$\sqrt{n+x}=x$
$x^{2}-n-x=0$
$x=\frac{1 \pm \sqrt{1+4 n}}{2}$
$1+\sqrt{1+4 n}=2,4,6,8$
$\sqrt{1+4 \mathrm{n}}=1,3,5,7, \ldots \ldots \ldots$.
$1+4 n=1,9,25,49$,
$4 \mathrm{n}=0,8,24,48,80$
$\mathrm{n}=2,6,12,20,30$
5 natural numbers are possible.
3. A

B C
x
Halogen
A +
$\mathrm{x}+1$
Noble gas
x +2
Alkali metal
AY
Halogen
Halogen
A \& Y both belong to the same group so they posses eovalent bonding due to less difference in elctronegativity.
4. Composition of air =

$$
\begin{aligned}
& \mathrm{N}_{2}=78 \% \\
& \mathrm{O}_{2}=21 \% \\
& \mathrm{Ar}=1 \%
\end{aligned}
$$

Mean molecular mass of air $=\frac{(78 \times 28)+(21 \times 32)+(1 \times 40)}{100}=28.96$
density of one mole Air $=\frac{\mathrm{m}}{\mathrm{V}}=\frac{28.96}{22.4}=1.29=1.3 \mathrm{~g} / \mathrm{L}$

5．Since the current flowing is same and area at P is more than area of Q ．
Hence current per unit area near P is less than current per unit area near Q ．

6．$\quad \sqrt{n+\sqrt{n+\sqrt{n}}}$ \qquad $=\mathrm{x}$ （prime number）
$\sqrt{n+x}=x$
$\mathrm{n}+\mathrm{x}=\mathrm{x}^{2}$
$x^{2}-x=n$
$x(x-1)=n$
$\mathrm{n}=1 \times 2$
$=2 \times 3$
$=3 \times 4$
$=4 \times 5$
$=5 \times 6$
Only three cases are possible
$\mathrm{n}=1 \times 2=2$
$\mathrm{n}=2 \times 3=6$
$\mathrm{n}=4 \times 5=20$ ．

9．Heat is received by container B which will be transferred to A by convection hence liquid of B will boil first．
10．Number of squares $=4 \times 3+3 \times 2+2 \times 1$
$=12+6+2=20$
11.

$$
6 \mathrm{MX}+\mathrm{L}_{3}\left(\mathrm{PO}_{4}\right)_{2} \rightarrow 2 \mathrm{M}_{3} \mathrm{PO}_{4}+3 \mathrm{LX}_{2}
$$

given moles $0.5 \quad 0.2$
$L R=\frac{\text { givenmoles }}{\text { stoichiometric coeff．}} \frac{0.5}{6}<\frac{0.2}{1}$
MX is LR
So， 6 moles of MX produces 2 moles of $\mathrm{M}_{3} \mathrm{PO}_{4}$
$\therefore 0.5$ moles will produces $-\frac{0.5 \times 2}{6}$
$=0.16$ moles of $\mathrm{M}_{3} \mathrm{PO}_{4}$

12．For p
$1 \mathrm{~m}^{3}$ contain $\rightarrow 16.3 \mathrm{~mL}$

$$
\rightarrow 16.3 \times 10^{-6} \mathrm{~m}^{3}
$$

for y
1 ppb contain $\rightarrow 16.3 \mathrm{~m}^{3}$
$1 \mathrm{~m}^{3}$ contain $\quad \rightarrow 16.3 \times 10^{-9} \mathrm{~m}^{3}$
for z
1 ppm contain $\rightarrow 16.3 \mathrm{~m}^{3}$
$1 \mathrm{~m}^{3}$ contain $\rightarrow 16.3 \times 10^{-6} \mathrm{~m}^{3}$
So y is least polluted and I will live in y ．

13．Since acceleration due to gravity is always in the downward direction so both during ascent and decent acc．will be downward
14. $a^{2}+b^{2}-8 c=3$

We know that perfect square of any positive integer is in the form of $4 n$ or $4 n+1$
Case - I : $\mathrm{a}^{2}=4 \mathrm{n}_{1}$ and $\mathrm{b}^{2} 4 \mathrm{n}_{2}$
then put in (1)
$4 n_{1}+4 n_{2}-8 \mathrm{c}=3$
when we divide LHS by 4
we get rem = 0
but on RHS we get rem $=3$
LHS \neq RHS .
Case - II: If $\mathrm{a}^{2}=4 \mathrm{n}_{1}+1$ and $\mathrm{b}=4 \mathrm{n}_{2}$
then, again put in equation (1)
$4 n_{1}+1+4 n_{2}-8 c=3$
Divide the above equation by 4 .
On LHS, we will get rem. 1 but on RHS, we wll get 3 .
$\therefore \quad$ LHS \neq RHS.
Case- III: If $a^{2}=4 n_{1}+1$ and $b^{2}=4 n_{2}+1$
then put in equation (1)
$4 \mathrm{n}_{1}+4 \mathrm{n}_{2}+1-8 \mathrm{c}=3$
divide by 4 .
On LHS, we will get rem = 2
On RHS, we will get rem = 3
$\therefore \quad \mathrm{LHS} \neq \mathrm{RHS}$
Hence there are no possible value of a, b, c.
17. As the particle is going from O to A its velocity increases
$\therefore \quad$ acc. is positive
Now from A its velocity starts decreasing so acc. is negative therefore F_{1} and F_{2} are in opposite direction.
18. Number of elements in power set of $x=2^{3}=8$. Number of elements in the power set of power set of x is 2^{8}.
19. Heat of neutralisation depeds upon the degree of dissociation of acid.

As the dissociation decreases conc. of H^{+}ions less a result lesser the value of heat of neutralisation
$\mathrm{HCN}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{CH}_{3} \mathrm{COOH}<\mathrm{HCOOH}$
$-2.8 \mathrm{~kJ}-3.34 \mathrm{~kJ}-55.2 \mathrm{~kJ} \quad-56.07 \mathrm{~kJ}$
20. Lithium is haivng tendency to form Lithium nitride so N_{2} should not be used
$6 \mathrm{Li}+\mathrm{N}_{2} \longrightarrow 2 \mathrm{Li}_{3} \mathrm{~N}$
21.

Since the system is there in free fall therefore there will be not tension in the string as there is no normal acting on the block.
22.

$\angle 1=\frac{1}{2} \times 300^{\circ}=150^{\circ}$
$\angle 2=180^{\circ}-\angle 1=30^{\circ}$
Number of side in a polygon $=\frac{360^{\circ}}{30^{\circ}}=12$.
\therefore only one value of n is possible i.e., $\mathrm{n}=12$.
25.

$2 \mathrm{~T} \cos \theta=\mathrm{W}$
$\mathrm{T}=\frac{\mathrm{w}}{2 \cos \theta}$
$\cos \theta$ will be between 0 to 1
so $T=$ between $w / 2$ and ∞
26. $\frac{n^{2}+1}{n+1}=n-1+\frac{2}{n+1}$
so $\mathrm{n}+1$ divides 2
$\therefore \quad \mathrm{n}+1= \pm 1, \pm 2$
$\therefore \quad \mathrm{n}=0,1,-2,-3$.
$\therefore \quad$ four values of n are possible.
27.

$\frac{x}{27} \quad\left(\frac{3}{2}\right)\left(\frac{x}{23}\right)$ moles
$\underset{\substack{\text { mole }} \underset{1 \text { mole }}{\mathrm{Zn}}+2 \mathrm{HCl}}{\longrightarrow} \mathrm{ZnCl}_{2}+\underset{2}{\mathrm{H}_{2}}$
$\frac{1-x}{65}$
$\left(\frac{1-x}{65}\right)$
(moles of H_{2} from Al$)+\left(\right.$ moles of H_{2} from Zn$)=$ Total H_{2} produces
$\frac{3}{2} \frac{x}{27}+\frac{1-x}{65}=\frac{524}{22400}$
$\frac{x}{16}+\frac{1-x}{65}=27.36$
$x=0.199 \mathrm{gm} \approx 0.2 \mathrm{gm}$
mass of $\mathrm{Al}=\mathrm{x}=0.2 \mathrm{gm}$
mass of $\mathrm{Zn}=1-\mathrm{x}=1-0.2=0.8 \mathrm{gml}$
28. Carbon, nitrogen and phosphorous are non metals and silicon is metalloid
29. When object is placed between pole and focus its image is virtual and erect and enlarged therefore (A) is the correct Answer.
30. For No. x \& y
$G M \geq H M$
$\sqrt{x y} \geq \frac{2}{\frac{1}{x}+\frac{1}{y}}$
$\sqrt{x y} \geq \frac{2}{2}$
$\sqrt{x y} \geq 1$
$x y \geq 1$
minimum value of $x y$ is 1
33.

As ray of light goes from rare to denser it bend towards the normal. Therefore B is the correct answer.
34.

By observing the above pattern, we can say that the difference between 2 terms are

(+)
(+)
(+)
(+)
So, the next difference is equal to the sum of the previous 2 differences.
By this we will get $T_{10}=324$
35. $\quad \mathrm{BCl}_{3}$

In BCl_{3}, Boron has only 6 electrons around it, so due to incomplete octet it act as Lewis acid.
36. Only 5 compounds will show permant dipole moment due to their lack of symmetry

(Symmetrical molecules have zero dipole moment)
37. Area of triangle formed will be
$=\frac{1}{2} \times$ Base \times height
$=\frac{1}{2} \times 4 \times 4$
$=8 \mathrm{~cm}^{2}$
38.

ar. of $\Delta=\frac{\sqrt{3}}{4} \times(1)^{2}=\frac{\sqrt{3}}{4}$
area of circle $=\pi r^{2}$
$=\frac{\pi}{4 \times 3}=\frac{\pi}{12}\left\{r=\frac{1}{2 \sqrt{3}}\right\}$
area of $\Delta-$ area of circle
$=\frac{\sqrt{3}}{4}-\frac{\pi}{12}$
$\mathrm{P}($ lying outside the incircle $)=\frac{\text { Area of } \Delta-\text { ar.of circle }}{\text { ar.of } \Delta}$
$=\frac{\frac{\sqrt{3}}{4}-\frac{\pi}{12}}{\frac{\sqrt{3}}{4}}$
$=1-\frac{\pi}{12} \times \frac{4}{\sqrt{3}}$
$=1-\frac{\pi}{3 \sqrt{3}}$
41. When the object is in rarer medium and is viewed from a denser medium then the obj. will appear to be at more height then its actual. $h^{\prime}>h$
42.

$a+b+c=316=2 s$
ar $\Delta=\sqrt{s(s-a)(s-b)(s-c)}$
we know that for the given sum the product will be maximum when the terms are equal.
as s is fixed
$\therefore \quad \mathrm{s}-\mathrm{a}=\mathrm{s}-\mathrm{b}=\mathrm{s}-\mathrm{c}$ is possible when $\mathrm{a}=\mathrm{b}=\mathrm{c}$.
as a, b, c are integer
\therefore we try to divide into equal part which one near to each other.
So only 1 such Δ is possible with sides.
$\therefore \quad a=b=105, c=106$.
43. Floor have phosphorous which reacts with old urine to releases phosphorous which ignite when oxidises. Phosphorous literally means "light-bearer", as the first compound of the element glowed in the dark moreover, its also a major element present in urine.
44. $\mathrm{KOH}+\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{KCl}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$
45. Spring balance shows tension and weighing machine shows normal
$\mathrm{T}=\mathrm{mg}-\mathrm{B}$
$\mathrm{T}=\mathrm{W}_{1}=\mathrm{W}_{\mathrm{A}}-\mathrm{B} \rightarrow$ for spring
$\mathrm{N}=\mathrm{W}_{2}=\mathrm{W}_{\mathrm{B}}+\mathrm{B} . \rightarrow$ for weighing machine
46. $6 \rightarrow 2 \times 3 \Rightarrow 4$ divisors.
$8 \rightarrow(2)^{3}$
$10 \rightarrow 5 \times 2$
$14 \rightarrow 7 \times 2$
$15 \rightarrow 5 \times 3$
$21 \rightarrow 7 \times 3$
$22 \rightarrow 11 \times 2$
$26 \rightarrow 13 \times 2$
$27 \rightarrow 3^{3}$
$33 \rightarrow 11 \times 3$
$34 \rightarrow 17 \times 2$
$35 \rightarrow 7 \times 5$
$38 \rightarrow 19 \times 2$
$39 \rightarrow 13 \times 3$
Total number $=14$
49. $u=-6 \mathrm{~cm}$
$\mathrm{f}_{1}=$?
$v=\infty$
So $f_{1}=-6 \mathrm{~cm}$
in second case
$\mathrm{u}=-6 \mathrm{~cm}$
$v=(30-6)$
$=24 \mathrm{~cm}$
$\frac{1}{f}=\frac{1}{v}+\frac{1}{u}$
$\frac{1}{f}=\frac{1}{24}-\frac{1}{6}$
$=\frac{-1}{8}$
$f_{2}=-8$
$\frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}=\frac{6}{8}=\frac{3}{4}$
50. $\quad N=3^{8}\left(3^{10}+6^{5}\right)+2^{3}\left(2^{12}+6^{7}\right)$
$=3^{18}+3^{13} \times 2^{5}+2^{15}+2^{10} 3^{7}$
$=\left(3^{6}\right)^{3}+\left(2^{5}\right)^{3}+3 .\left(3^{6}\right)^{2}\left(2^{5}\right)+3\left(3^{6}\right)\left(2^{5}\right)^{2}$
$=\left(3^{6}+2^{5}\right)^{3}$
$=(761)^{3}$
As 761 in not a perfect square so. N is not a perfect square but it is a perfect cube of 761 .
51. Melting point is the temperature at which solid and liquid state.
52. n-butane

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}
$$

iso-butane

n - butanol

iso-butanol

The strongest intermolecular force that is happening in this molecule is hydrogen bonding. The iso-butanol group, will do a better job of blocking off one side of the -OH group, making it a little bit harder to make a hydrogen bond the net result being the iso-butanol has lower boiling point than n-butanol.
53. Pressure at same height inside the same liquid remains same so that
$10 \times 3.36 \times \mathrm{g}=2 \times 13.6 \times \mathrm{g}+8 \times \rho_{\mathrm{x}} \times \mathrm{g}$
$\rho_{\mathrm{x}}=0.8 \mathrm{~g} / \mathrm{c} . \mathrm{c}$
54. $\mathrm{n}={ }^{6} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{2}=\frac{6 \times 5}{2} \times \frac{4 \times 3}{2}=90$
$\mathrm{m}={ }^{5} \mathrm{C}_{2} \times{ }^{5} \mathrm{C}_{2}=\frac{5 \times 4}{2} \times \frac{5 \times 4}{2}=100$.
$\therefore \quad \mathrm{m}>\mathrm{n}$ or $\quad \mathrm{m}>\mathrm{n}+5$.
57.

Now since the battery is connected between A \& D
$\therefore \mathrm{C}$ and B becomes open terminal

Req $=5+10+5$
$=20 \Omega$
58. As one angle of rhombus is 60°

\therefore Rhombus is divided into two eq. Δ.
Rhombus Area $=2 \times \frac{\sqrt{3}}{4} A B^{2}=\frac{\sqrt{3}}{2} A B^{2}$.
59. $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ (hydration)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \xrightarrow{\mathrm{CrO}_{3}} \mathrm{CH}_{3}-\mathrm{CHO}$ (oxidation)
$\mathrm{CH}_{3}-\mathrm{CHO} \longrightarrow \mathrm{LiAlH}_{4} \quad \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$ (Reduction)
$\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$ (dehydration)
60. Atomic number of ruthenium is 44 which is present just below iron (Fe).
61. Current across B_{3} is maximum and current in B_{1} and B_{2} is same although $<B_{3}$ and resistance of B_{2} is more than B_{1} so by relation of $I^{2} R$
$w_{1}<w_{2}<w_{3}$
62. $a, b>0$
$\mathrm{Am} \geq \mathrm{GM}$
$\frac{a+b}{2} \geq \sqrt{a b}$
$a+b \geq 2 \sqrt{a b}$
$a+b>\sqrt{a b}$
65. (A) $V_{A B}: V_{B C}=R_{A B}: R_{B C}($ in series $V \propto R)$
$=\frac{\ell L}{\pi(\ell r)^{2}}: \frac{\ell L}{\pi(r)^{2}}$
$\frac{V_{A B}}{V_{B C}}=4: 1$
$\frac{V_{A B}}{V_{B C}}=\frac{4}{1}$
$\mathrm{V}_{\mathrm{AB}}=4 \mathrm{~V}_{\mathrm{BC}}$
66. a is not less than 4 means a is either equal to 4 or greater than 4 which can be writtern $a \geq 4$
67. chemist $d_{A}=2, d_{B}=3$
40% vol. of $A, 60 \%$ vol. of B
Density off mixture $=\frac{0.8 v+1.8 v}{v}=\frac{2.6 v}{v}=2.6$
Now as per law of floatation $\rho \mathrm{vg}=2.6 \mathrm{vg}$

$$
\rho=2.6 \mathrm{~g} / \mathrm{ml}
$$

68. Three
$\mathrm{C}_{3} \mathrm{H}_{4}$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}, \mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}_{3}$

69.

Now \therefore magnetic field due to loop is outward
\therefore By flemmings left hand rule or right hand palm rule force on the current carrying conductor will be towards loop

70．Buildings of＇A＇and＇B＇can be on same side of the car and on the opposite sides of the car．In both the cases，we cannot compare their height．

73． Magnification $=\frac{f}{f-u}$
$m=\frac{1}{n}=\frac{f}{f-u}$
$\mathrm{f}-\mathrm{u}=\mathrm{nf}$
$\mathrm{f}-\mathrm{nf}=\mathrm{u}$
$\mathrm{f}(1-\mathrm{n})=\mathrm{u}$
$\because \mathrm{u}$ is -ve
$\therefore \mathrm{u}=\mathrm{f}(\mathrm{n}-1)$

74．Total surface area
$=4 \pi(\sqrt{2}+\sqrt{3})^{2} \mathrm{~cm}^{2}$
$(\sqrt{2}+\sqrt{3})^{2}=5+2 \sqrt{6}$
Area $=400 \pi(5+2 \sqrt{6}) \mathrm{mm}^{2}$
75．Silver is the metallic element with the atomic number 47．Its symbol is Ag，from the latin argentum． Argentina is derived from Argentum．Another key use for silver is in the millions of water purifiers．Silver prevents bacteria and algoe from building up in the filters．

76．Valence electron of NO_{3}^{-}is $\rightarrow 24$ and valence e^{-}in $\mathrm{CO}_{3}^{-2} \rightarrow 24$

$$
\mathrm{HCO}_{3}^{-} \rightarrow 24
$$

$\mathrm{NF}_{3} \rightarrow 26$ ．
and $\mathrm{SO}_{3} \rightarrow 24$
So NF_{3} contain 26 valence electron and other contain 24.
77． $2: 10 \mathrm{am}$
angle $=2 \times 30-10 \times \frac{11}{2}$
$=60-55$
$=5^{\circ}$
78．Volume of cylinder＝volume of sphere
$\pi \mathrm{r}^{2} \mathrm{~h}=\frac{4}{3} \pi \mathrm{R}^{3}$
$\pi(3)^{2} \times 6=\frac{4}{3} \times \pi \mathrm{R}^{3}$
$\mathrm{R}=3 \sqrt[3]{\frac{3}{2}}$

