

SUBJECT : PHYSICS & CHEMISTRY

Test Booklet Set No.

17

GUJARAT COMMON ENTRANCE TEST (GUJCET) 2018

Date: 23 April, 2018 | Duration: 2 Hours | Max. Marks: 80

:: IMPORTANT INSTRUCTIONS ::

- 1. The Physics and Chemistry test consists of 80 questions. Each question carries 1 mark. For each correct response, the candidate will get 1 mark. For each incorrect response 1/4 mark will be deducted. The maximum marks are 80.
- 2. This test is of 2 hrs. duration.
- 3. Use Black Ball Point Pen only for writing particulars on OMR Answer Sheet and marking answer by darkening the circle 'e'.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the Invigilator in the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The Set No. for this Booklet is **17**. Make sure that the Set No. printed on the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately.
- 7. The candidate should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet.
- 8. Do not write you Seat No. anywhere else, except in the specified space in the Test Booklet/Answer Sheet.
- 9. Use of White fluid for correction is not permissible on the Answer Sheet.
- 10. Each candidate must show on demand his/her Admission Card to the Invigilator.
- 11. No candidate, without special permission of the Superintendent or Invigilator, should leave his/her sent.
- 12. Use of Manual Calculator is permissible.
- 13. The candidate should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and must sign the Attendance Sheet (Patrak 01). Cases where a candidate has not signed the Attendance Sheet (Patrak 01) will be deemed not to have handed over the Answer Sheet and will be dealt with as an unfair means case.
- 14. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 15. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 16. The candidates will write the Correct Test Booklet Set No. As given in the Test Booklet/Answer Sheet in the Attendance Sheet. (Patrak 01)

Candidate's Name :	
Exam. Seat No. (in figures)	(in words)
Name of Exam. Centre :	Exam. Centre No. :
Test Booklet Set No. :	Test Booklet No. :

Candidate's Sign.....Block Supervisor Sign....

Resonance Eduventures Ltd.

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Toll Free: 1800 258 5555 | Fax: +91-022-39167222 |

 Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029

 Toll Free: 1800 258 5555 S

 Image: State State

Success at Pre-Engineering 2017

TOTAL NO. OF SELECTIONS in JEE (Advanced) 2017

Classrooms - 4095 | DLPD + ELPD - 2146

TOTAL NO. OF SELECTIONS in JEE (Main) 2017

Classrooms - 17800 | DLPD + ELPD - 6719

ADMISSIONS OPEN Classes: V to XII & XII+ Target: JEE (Main+Advanced) JEE (Main) | AIIMS/ NEET Pre-foundation | Commerce & CLAT Resonet Dates 6th & 13th May 2018 Test Timings: 9 AM to 12 Noon

f y 🛗 Ŵ

Toll Free: 1800 258 5555 | Visit us: www.resonance.ac.in

PHYSICS

1. Two parallel very long straight wires carrying current of 5A each are kept at a separation of 1 m. If the currents are in the same direction, the force per unit length between them is _____ N/m. ($\mu_0 = 4\pi \times 10^{-7}$ SI] (A) 5×10^{-5} , attractive (B) 5×10^{-6} , attractive (C) 5×10^{-5} , repulsive (D) 5×10^{-6} , repulsive

$$\label{eq:Sol.} \textbf{Sol.} \qquad \frac{F}{\ell} = \frac{\mu_0 I_1 I_2}{2\pi d} \ \textbf{=} \ \textbf{2} \ \textbf{\times} \ \textbf{10}^{-7} \ \textbf{\times} \ \frac{5 \times 5}{1} = 5 \times 10^{-6} \,, \ \text{attractive}$$

2. A very long straight wire of radius r carries current I. Intensity of magnetic field B at a point, lying at a perpendicular distance 'a' from the axis is ∞

The relation between B_h , B_v and B is _____ 4. (A) $B = \sqrt{B_h^2 + B_v^2}$ (B) $B = B_h$. B_v (C) $B = \frac{B_v}{B_h}$ (D) $B = \frac{B_h}{B_v}$

Ans. (A)

Sol.

►B_h Ġ., $\mathsf{B} = \sqrt{\mathsf{B}_v^2 + \mathsf{B}_h^2}$

Resonance Eduventures Limited

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rai.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in Page | 1 | Toll Free : 1800 258 5555 🔊 08003 444 888 🚹 facebook.com/ResonanceEdu 😏 twitter.com/ResonanceEdu 📓 www.youtube.com/resowatch 🕒 blog.reso

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 I 0

 Image | 2 |

 <td col

9.	If the uncertainty in the p	osition of an electron is	10^{-10} m, then the value	of uncertainty in its momentum
	will be kgms ⁻¹ . (r	$1 = 6.62 \times 10^{-34} \text{ J-s}$	$(C) 1.06 \times 10^{-24}$	
Ans.	(A) 1.05 × 10 (A)	(B) 1.05 × 10	(0) 1.00 × 10	(D) 1.00 ~ 10
/	h			
Sol.	$\Delta x \Delta P \geq \frac{H}{2\pi}$			
	$\Rightarrow \qquad \Delta P \ge \frac{6.62 \times 10^{-10}}{2 \times 3.14 \times 10^{-10}}$	0 ⁻¹⁰		
	$\Delta P \ge 1.05 \times 10^{-24} = 1.053$	36 × 10 ^{−24}		
10.	If the energy of photons	corresponding to wavel	ength of 6000 Å is 3.2 ×	10 ⁻¹⁹ J. The photon energy for
	wavelength of 4000 Å wil	ll be		
Ans.	(A) 4.44 × 10 ⁻¹⁹ J ((D)	(B) 2.22 × 10 ^{−19} J	(C) 1.11 × 10 ^{−19} J	(D) 4.80 × 10 ^{−19} J
Sol.	$E = \frac{hc}{\lambda}$			
	$3.2 \times 10^{-19} = \frac{hc}{6000} \Rightarrow hc$	$c = 6000 \times 3.2 \times 10^{-19}$		
	$E = \frac{hc}{\lambda} = \frac{6000}{4000} \times 3.2 \times 10$	⁻¹⁹ = 4.8 × 10 ⁻¹⁹ J		
11.	Two inductors each of i	nductance L are conne	ected in parallel. One m	ore inductor of value 5 mH is
	connected in series of	this configuration then	the effective inductant	ce is 15 mH. The value of L
	is mH.			
	(A) 10	(B) 5.0	(C) 2.5	(D) 20
Ans.	(D)			
Sol.				
		5		
	$\frac{1}{2} + 5 = 15$			
	L = 20 mH			

12. A lamp consumes only 50% of maximum power in an A.C. circuit. What is the phase difference between the applied voltage and the circuit current ?

(A) $\frac{\pi}{4}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{6}$	(D) $\frac{\pi}{2}$
•	Ū.	·	-

Ans. (B)

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 S

 Solution:
 Solution:

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 S

 Sologue Solo

Sol.	P _{avg} = V _r	msIrms COS ∳						
	P _{max} = V	rmsIrms						
	$\Rightarrow \frac{V_{ms}I}{2}$	[[] ms] = V _{rms} I _{rms} co	θSφ					
	$\Rightarrow \cos\phi$	$=\frac{1}{2}$						
	$\phi = \frac{\pi}{3}$							
13	A canaci	itor 'C' is connec	ted across a D	C sourc	e the reactar	nce of capa	citor will be	
10.	(A) ZER	0	(B) HIGH	0. 00010	(C) LOW		(D) INFINITE	·
Ans.	(D)		. ,					
Sol.	$X_{\rm C} = \frac{1}{\omega C}$	\overline{c} , $\omega = 0$						
14.	The dim	ensional formula	a of μ₀∈₀ is					
Ans.	(A) M ⁰ L ⁻	-2T2	(B) M ⁰ L ² T ⁻²		(C) M ⁰ L ¹ T ⁻¹		(D) M ⁰ L ⁻¹ T ¹	
Sol	C =	1 ⇒ u, e,=	1					
	$\sqrt{\mu_0}$	$ \in_0 $ $\mu_0 \subset_0^-$	C ²					
	$C \rightarrow M^0$	¹ L ¹ T ⁻¹						
	$\frac{1}{C^2} \rightarrow N$	/ºL ⁻² T ²						
15.	Match C	olumn I and Col	umn II		Column II			
	(i)	Interference		(P)	Coherent so	urces		
	(ii) I	Brewster's Law		(Q)	$\mu = \frac{1}{\operatorname{cin} C}$			
	(iii)	Malus Law		(R)	$\mu = \tan \theta_{p}$			
	(iv) $(\Delta) i \rightarrow F$	Total Internal ret ⊇ii → Siii → R	flection $i_{V} \rightarrow O$	(S)	$I = I_0 \cos^2 \theta$			
	$(B) i \rightarrow F$	P, ii → R, iii → S	, iv $\rightarrow Q$					
	(C) i \rightarrow (D) i \rightarrow F	Q, ii → S, iii → R R, ii → Q, iii → S	R, iv $\rightarrow P$ S, iv $\rightarrow P$					
Ans.	(B)		,,.					
501.	(i) · · (ii) ·	→ P → R						
	Brew ste	er's Law ⇒ u = tan i⊳						
	(iii)	\rightarrow S						
	Malus la	w I = I₀cos²∳						
	(iv) TIR	→Q						
	usinC =	1 ⇒ u = <u>1</u>	_					
		$=$ μ sin(C					

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 I 0

 Image | 4 |

 Image | 4

 Image | 4

 Image | 4

16.	$\begin{array}{l} \mbox{Frequencies of variou} \\ f_v \rightarrow \mbox{Visible li} \\ f_r \rightarrow \mbox{Radio wa} \\ f_{uv} \rightarrow \mbox{Ultra Vi} \\ \mbox{Then which of followi} \\ \mbox{(A) } f_{uv} < f_v < f_r \end{array}$	us radiations are given as ght aves olet waves ng is true ? (B) $f_r < f_v < f_{uv}$	(C) f _v < f _r < f _{uv}	(D) f _{uv} < f _r < f _v
Ans. Sol.	(B) $\lambda_{uv} < \lambda_v < \lambda_r$ $f_{uv} > f_v > f_r$			
17.	Wavelength of charac (A) A	cteristic X-ray depends on (B) Z	which property of target (C) Melting point	? (D) All of these
Ans. Sol.	(B) Wavelength of charac	cteristic x-ray depends on	material used as the me	etal target (Z)
18.	The energy of the fas (A) 2 MeV	t neutrons emitted in a nu (B) 2 KeV	clear fission reactor is ap (C) 10 MeV	pproximately (D) 20 MeV
Ans. Sol.	(A) 2MeV			
19.	in radioactive reaction ${}^{A}_{Z}X \rightarrow^{A}_{Z+1}X_{1} \rightarrow^{A}_{Z+2}X_{2}$ successive emission (A) $B^{-}_{Z}B^{-}_{Z}B^{-}_{Z}\alpha$	h $\rightarrow_z^{A-4} X_3 \rightarrow_{Z+1}^{A-4} X_4$ of particles is (B) $\beta^- \beta^- \beta^+ \alpha$	(C) 8 ⁻ 8 ⁻ 9 9	(D) 8- 8- a 8-
Ans. Sol.	(D) ${}^{A}_{Z}X \longrightarrow {}^{A}_{Z+1}X_{1} + \beta^{-}$ ${}^{A}_{Z+2}X_{1} \longrightarrow {}^{A}_{Z+2}X_{2} + \beta^{-}$ ${}^{A}_{Z+2}X_{2} \longrightarrow {}^{A-4}_{Z}X_{3} + 0$ ${}^{A-4}_{Z}X_{3} \longrightarrow {}^{A-4}_{Z+1}X_{4} + \beta^{-}$	(e) p , p , p , o		
20.	In CE transistor ampl (A) reverse, reverse	ifier, the collector junction (B) forward, forward	has bias and emitt (C) reverse, forward	er junction has bias. (D) forward, reverse
Sol.	For operation in actibiased while emitter-	ive region (i.e., for ampli base junction is forward b	fication to work) the co iased.	llector-base junction is reverse
21.	When carrier wave of of 15 V and minimum (A) 30%	2.5 MHz frequency is am amplitude of 10 V. The m (B) 20%	plitude modulated, the re odulation index is (C) 10%	esulting AM wave has maximum · (D) 40%
Ans.	(B)	$(V_{max} - V_{min})$	(-)	(-,
Sol.	Molulation Index = $\frac{v_i}{v}$	$\frac{m}{c} = \frac{\frac{2}{(v_{max} + v_{min})}}{\frac{2}{2}}$ $= \frac{15 - 10}{15 + 10} \times 100\% = 20\%$		

reverse

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | Page Toll Free : 1800 258 5555 💿 08003 444 888 📑 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔛 twitter.com/ResonanceEdu

	SONANCE	Gujarat Common Entrance	Гest (GUJCET) 2018 Physic	s & Chemistry 23-04-201	8 Code-17
22.	Which of the	following is wrong for interfe	erence fringes?		
	(A) Fringes a	re due to limited portion of v	vave front		
	(B) All bright	fringes are equally bright			
	(C) Distance	between two consecutive fr	inges is constant		
	(D) Fringes a	re due to the use of coherer	nt sources		
Ans.	(C)				
23.	A ray of light	traveling in impure water i	s incident on a glass plat	te immersed in it. When	the angle of
	incidence is {	51°, the reflected ray is tota	lly plane polarized. Given	that refractive index of i	mpure water
	is 1.4. The re	fractive index of glass shoul	ld be(tan 51° =	= 1.235)	
	(A) 1.64	(B) 1.34	(C) 1.53	(D) 1.73	
Ans.	(D)				
Sal	$0 \pm 0 = \pi$				
301.	$\theta_i + \theta_r - \frac{1}{2}$				
	Applying snel	ll's law :			
	$\mu_{water} sin \theta_{I} = \mu$	$_{glass}sin\theta_r = \mu_{glass}cos\theta_r$			
	\Rightarrow μ_{glass}	= 1.4 × tan51° = 1.4 × 1.2	35 ≈ 1.73		
24.	A coil having	g 200 turns has a surface	area of 0.15 m ² . A mag	gnetic field of strength 0	.2 T applied
	perpendicula	r to this changes to 0.6 T in	0.4 s, then the induced er	mf in the coil is V.	
	(A) 45	(B) 30	(C) 15	(D) 60	
Ans.	(B)				
Sol.	φ= n × A × B				
	where $n = Nc$	o. of turns			
	A = A	Area of loop			
	B = N	Agnetic field			
	_				
	$\therefore \qquad \epsilon = \frac{2}{4}$	$\frac{d\Psi}{\Delta t} = nA \frac{\Delta B}{\Delta t}$			
		06-02			
	= 200 ×0.15	$5 \times \frac{0.0 - 0.2}{0.4} = 30V$			
25	A sinusoidal	A.C. current flows through	a resistor of resistance 1	00. If the neak current is	s 2 A flowing
20.	through the r	esistor then the nower dissir	nated in W		5 2 7 Howing
	(A) 30	(B) 20	(C) 10	(D) 40	
Ans.	() () () (B)	(2) 20			
Sol	Average now	er dissinated =			
501.	, werage pow	$= < I_2 2D \sin^2(\omega^{-1})^{-1}$	•		
		$= <10^{-10} \text{K sin}^{-1}(\omega_{\text{C}})^{-1}$			
		$= 10^{2} \text{K} < \text{SIR}^{2}(\omega t) >$			
		$= 4 \times 10 \times 1/2$			
		= 20 watt.			

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | Page Toll Free : 1800 258 5555 💿 08003 444 888 📑 facebook.com/ResonanceEdu 💟 twitter.com/ResonanceEdu 🔛 twitter.com/ResonanceEdu

	SONANCe [®] Gujarat Common Entrance Test (G	GUJCET) 2018 Physic	s & Chemistry 23-04-2018 Code-17
26.	Which of following gates produces output of 1?	?	
		- (C) 0	
Ans.	(B)		
Sol.	Output of circuit (B) is $\overline{0.0} = \overline{0} = 1$		
27.	The value of β of a transistor is 19. The value α	of α will be	
	(A) 0.93 (B) 0.98	(C) 0.99	(D) 0.95
Ans.	(D)		
Sol.	$I_E = I_B + I_C$		
	$\Rightarrow \qquad \frac{I_{E}}{I_{E}} = \frac{I_{B}}{I_{B}} + 1 \qquad \Rightarrow \qquad \frac{1}{I_{E}} = \frac{1}{I_{E}} + 1 = \frac{1}{I_{E}}$	 _ +1	
	$I_c I_c \qquad \alpha \beta \qquad 19$	9	
	$\Rightarrow \qquad \frac{1}{\alpha} = \frac{20}{19} \qquad \Rightarrow \qquad \alpha = \frac{19}{20} = 0.95$	5	
	u 15 20		
28.	If the half-life of a radioactive element is 10 hr,	its average life =	
	(A) 1.44 (B) 6.93	(C) 14.4	(D) 0.693
Ans.	(C)		
Sol.	$\lambda t_{1/2} = \ell n \ 2 = 0.693$		
	$\Rightarrow t_{avg} = \frac{1}{\lambda} = \frac{t_{1/2}}{\ell n 2} = \frac{10}{0.693} \Rightarrow t_{avg} = 14.4$		
	in the second second state of second 2		
29.	Is the wavelength of photon of energy 3 b = 6.625 x 10^{-34} Ls c = 3 x 10^8 m/s 1 eV = 1	16×10^{-19}	
	(A) 35×10^{-12} m (B) 35 Å	(C) 35 nm	(D) 3 5 Å
Ans.	(A)	(0) 0.0 1.11	
<u>.</u>	hc $6.625 \times 10^{-34} \times 3 \times 10^{8}$		
SOI.	$\lambda = \frac{1}{E_{\gamma}} = \frac{1}{35 \times 10^3 \times 1.6 \times 10^{-19}} \text{ m}$		
	= 0.35 × 10 ^{−10} m = 35 × 10 ^{−12} m		
30.	The band gaps of an insulator, conductor an	d semi conductor a	re respectively E_{g1} , E_{g2} and E_{g3} . The
	relationship between them is given as		
	(A) $E_{g1} > E_{g2} < E_{g3}$	(B) $E_{g1} > E_{g2} > E_{g}$	3
•	(C) $E_{g1} < E_{g2} > E_{g3}$	(D) $E_{g1} < E_{g2} < E_{g}$	3
Ans.	(A) Band can of insulator is highest while that of a	conductor is least S	
301.	East yap of modulor is highest, while that of the $r_1 > Fa_2 > Fa_2$		σ,
	$Eq_1 > Eq_2$		
	$Eg_3 > Eg_2$		
	$Eg_1 > Eg_2 < Eg_3$		

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 I 0

 Image | 7 |

 Toll Free : 1800 258 5555 I 0

 Image | 7 |

 Toll Free : 1800 258 5555 Image | 2003 444 888

31. Three identical charges are placed on three vertices of a square. If the force acting between q_1 and q_2

- **32.** When a 10μ C charge is enclosed by a closed surface, the flux passing through the surface is ϕ . Now another 10μ C charge is placed inside the closed surface, then the flux passing through the surface is
- (A) 4 (D) zero (B) (C) 2¢ (C) Ans. Electric flux = $\frac{q_{inc}}{\epsilon_0}$ Sol. $\phi = \frac{10 \mu C}{\epsilon_0}$ If more 10mC charge is placed. Electric flux = $=\frac{20\mu C}{\epsilon_0}=2\phi$ 33. The electric force acting between two point charges kept at a certain distance in vacuum is 16N. If the same two charges are kept at the same distance in a medium of dielectric constant 8. The electric force acting between them is _____ N. (A) 1024 (B) 128 (C) 16 (D) 2 Ans. (C) 33. А R Electric force acting between them is same as it was in vaccum so, Ans = 16N

Net force on each charge $=\frac{16}{8}=2N$

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Page | 8 |

 Toll Free : 1800 258 5555 S

 Solo 258 5555 S

 Solo 258 5555 S

34. The unit of polarizability of the molecule is:		Gujarat Common Entrance Test (GUJCET) 2018 Physics & C	Chemistry 23-04-2018 Code-17
(A) $C^{2m}N^{-1}$ (B) $C^{-2m-N^{-1}}$ (C) $C^{-2m}N^{-1}$ (D) $C^{2m-N^{-1}}$ Ans. (A) Sol. Polarizability (α) is the ratio of induced dipole moment to the electric field E. $\alpha = \frac{p}{E}$ $\Rightarrow \frac{Cm}{N/C} = c^{2m}N^{-1}$ 35. On the axis and on the equator of an electric dipole for all points (A) On both of them V $\neq 0$ (B) On both of them V = 0 (C) On the axis V = 0 and on equator V $\neq 0$ (D) On the axis V $\neq 0$ and on equator V = 0 Ans. (D) Sol. On the axis v $\neq 0$ and on equator, v = 0 36. When the temperature of a conductor increases the ration of conductivity and resistivity (A) remain constant (B) increase (C) decrease (D) increase or decrease Ans. (C) Sol. When temp of conductor increase its conductivity decrease and resistivity increase. $p = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{p} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2Ω. First they are connected to obtain possible minimum resistance. The ration of maximum resistance. The ration of maximum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_3 = 20\Omega$ Minimum resistance when connected in parallel. $R_p = \frac{2}{10}\Omega$	34.	The unit of polarizabity of the molecule is:		
Ans. (A) Sol. Polarizability (a) is the ratio of induced dipole moment to the electric field E. $\alpha = \frac{P}{E}$ \Rightarrow $\frac{Cm}{N/C} = c^2mN^{-1}$ 35. On the axis and on the equator of an electric dipole for all points (A) On both of them V $\neq 0$ (B) On both of them V = 0 (C) On the axis V = 0 and on equator V $\neq 0$ (D) On the axis V $\neq 0$ and on equator V = 0 Ans. (D) 36. When the temperature of a conductor increases the ration of conductivity and resistivity (A) remain constant (B) increase (D) increase or decrease (D) correase (D) increase or decrease Ans. (C) 36. When the temperature of a conductor increases the ration of conductivity and resistivity (A) a constant (B) increase (D) increase or decrease Ans. (C) 30. When the temperature of a conductor increase its conductivity decrease and resistivity increase. (C) decrease (D) increase or decrease Ans. (C) Sol. When temp of conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2Ω . First they are connected to obtain possible minimum resistance. The ration of maximum and minimum resistance is		(A) $C^2m^1N^{-1}$ (B) $C^{-2}m^{-1}N^1$	(C) C ⁻² m ¹ N ⁻¹	(D) C ² m ⁻¹ N ⁻¹
Sol. Polarizability (a) is the ratio of induced dipole moment to the electric field E. $\alpha = \frac{P}{E}$ $\Rightarrow \frac{Cm}{N/C} = c^2mN^{-1}$ 35. On the axis and on the equator of an electric dipole for all points (A) On both of them V $\neq 0$ (B) On both of them V = 0 (C) On the axis V = 0 and on equator V $\neq 0$ (D) On the axis V $\neq 0$ and on equator V = 0 Ans. (D) Sol. On the axis v $\neq 0$ and on equator, v = 0 36. When the temperature of a conductor increases the ration of conductivity and resistivity (A) remain constant (B) increase (C) decrease (D) increase or decrease Ans. (C) Sol. When temp of conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2Ω. First they are connected to obtain possible minimum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_s = 20\Omega$ Minimum resistance when connected in parallel. $R_{p} = \frac{2}{10}\Omega$	Ans.	(A)		
$\alpha = \frac{P}{E}$ $\Rightarrow \qquad \frac{Cm}{N/C} = c^2 m N^{-1}$ 35. On the axis and on the equator of an electric dipole for all points (A) On both of them V ≠ 0 (B) On both of them V = 0 (C) On the axis V = 0 and on equator V ≠ 0 (D) On the axis V ≠ 0 and on equator V = 0 Ans. (D) Sol. On the axis v ≠ 0 and on equator, v = 0 36. When the temperature of a conductor increases the ration of conductivity and resistivity (A) remain constant (B) increase (C) decrease (D) increase or decrease Ans. (C) Sol. When the temp of conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistance 2Ω. First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible minimum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_{S} = 20\Omega$ Minimum resistance when connected in parallel. $R_{p} = \frac{2}{10} \Omega$	Sol.	Polarizability (α) is the ratio of induced dipole	moment to the electric fie	eld E.
$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $		$\alpha = \frac{P}{P}$		
$\Rightarrow \frac{Cm}{N/C} = c^2 m N^{-1}$ 35. On the axis and on the equator of an electric dipole for all points (A) On both of them V $\neq 0$ (B) On both of them V = 0 (C) On the axis V = 0 and on equator V $\neq 0$ (D) On the axis V $\neq 0$ and on equator V = 0 Ans. (D) Sol. On the axis v $\neq 0$ and on equator, v = 0 36. When the temperature of a conductor increases the ration of conductivity and resistivity (A) remain constant (B) increase (C) decrease (D) increase or decrease Ans. (C) Sol. When temp of conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2Ω . First they are connected to obtain possible minimum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_s = 2\Omega\Omega$ Minimum resistance when connected in parallel. $R_p = \frac{2}{10} \Omega$		E		
35. On the axis and on the equator of an electric dipole for all points (A) On both of them V $\neq 0$ (B) On both of them V = 0 (C) On the axis V = 0 and on equator V $\neq 0$ (D) On the axis V $\neq 0$ and on equator V = 0 Ans. (D) Sol. On the axis v $\neq 0$ and on equator, v = 0 36. When the temperature of a conductor increases the ration of conductivity and resistivity (A) remain constant (B) increase (C) decrease (D) increase or decrease Ans. (C) Sol. When temperature of a conductor increases the ration of conductivity and resistivity (A) remain constant (B) increase (C) decrease (D) increase or decrease Ans. (C) Sol. When temp of conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\sigma^{\circ} = \sigma^{2}$ So it decrease. 37. You are given 10 resistors each of resistance 2Ω. First they are connected to obtain possible minimum resistance. The ration of maximum and minimum resistance is		$\Rightarrow \qquad \frac{Cm}{N/C} = c^2 m N^{-1}$		
35. On the axis and on the equator of an electric dipole for all points (A) On both of them V $\neq 0$ (B) On both of them V = 0 (C) On the axis V = 0 and on equator V $\neq 0$ (D) On the axis V $\neq 0$ and on equator V = 0 Ans. (D) Sol. On the axis v $\neq 0$ and on equator, v = 0 36. When the temperature of a conductor increases the ration of conductivity and resistivity (A) remain constant (B) increase (C) decrease (D) increase or decrease Ans. (C) Sol. When them pof conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2Ω . First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_S = 2\Omega\Omega$ Minimum resistance when connected in parallel. $R_p = \frac{2}{10}\Omega$				
(A) On both of them V $\neq 0$ (B) On both of them V = 0 (C) On the axis V = 0 and on equator V $\neq 0$ (D) On the axis V $\neq 0$ and on equator V = 0 Ans. (D) Sol. On the axis v $\neq 0$ and on equator, v = 0 36. When the temperature of a conductor increases the ration of conductivity and resistivity (A) remain constant (B) increase (C) decrease (D) increase or decrease Ans. (C) Sol. When temp of conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2Ω. First they are connected to obtain possible minimum resistance. The net hey are connected to obtain possible minimum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_{s} = 20\Omega$ Minimum resistance when connected in parallel. $R_{p} = \frac{2}{10}\Omega$	35.	On the axis and on the equator of an electric of	lipole for all points	<u>.</u>
(C) On the axis V = 0 and on equator V $\neq 0$ (D) On the axis V $\neq 0$ and on equator V = 0 Ans. (D) Sol. On the axis v $\neq 0$ and on equator, v = 0 36. When the temperature of a conductor increases the ration of conductivity and resistivity		(A) On both of them V $\neq 0$	(B) On both of them V	′ = 0
Ans. (D) Sol. On the axis v ≠ 0 and on equator, v = 0 36. When the temperature of a conductor increases the ration of conductivity and resistivity		(C) On the axis V = 0 and on equator V \neq 0	(D) On the axis V \neq 0	and on equator V = 0
Sol. On the axis v ≠ 0 and on equator, v = 0 36. When the temperature of a conductor increases the ration of conductivity and resistivity	Ans.	(D)		
36. When the temperature of a conductor increases the ration of conductivity and resistivity (A) remain constant (B) increase (C) decrease (D) increase or decrease Ans. (C) Sol. When temp of conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2Ω . First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. Rs = 20Ω Minimum resistance when connected in parallel. R_ $\rho = \frac{2}{10}\Omega$	Sol.	On the axis $v \neq 0$ and on equator, $v = 0$		
36. When the temperature of a conductor increases the ration of conductivity and resistivity (A) remain constant (B) increase (C) decrease (D) increase or decrease Ans. (C) Sol. When the p of conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2Ω . First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. Rs = 20\Omega Minimum resistance when connected in parallel. R_{\rho} = $\frac{2}{10} \Omega$				
36. When the temperature of a conductor increases the ration of conductivity and resistivity (A) remain constant (B) increase (C) decrease (D) increase or decrease Ans. (C) Sol. When temp of conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2 Ω . First they are connected to obtain possible minimum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. R _S = 20 Ω Minimum resistance when connected in parallel. R _p = $\frac{2}{10} \Omega$				
(A) remain constant (B) increase (C) decrease (C) decrease (C) decrease (C) Sol. When temp of conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2Ω . First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_s = 2\Omega\Omega$ Minimum resistance when connected in parallel. $R_{\rho} = \frac{2}{10}\Omega$	36.	When the temperature of a conductor increase	es the ration of conductiv	ity and resistivity
(C) decrease (D) increase or decrease Ans. (C) Sol. When temp of conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2Ω . First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_s = 20\Omega$ Minimum resistance when connected in parallel. $R_{\rho} = \frac{2}{10}\Omega$		(A) remain constant	(B) increase	
Ans. (C) Sol. When temp of conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2Ω . First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_s = 20\Omega$ Minimum resistance when connected in parallel. $R_p = \frac{2}{10}\Omega$ Ω Ω Ω Ω Ω	A	(C) decrease	(D) increase or decrea	ase
Sol. When temp of conductor increase its conductivity decrease and resistivity increase. $\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2\Omega. First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_s = 20\Omega$ Minimum resistance when connected in parallel. $R_p = \frac{2}{10}\Omega$	Ans.	(C) When terms of conductor increases its conducti	vity decrease and resistiv	vity increases
$\rho = \frac{1}{\sigma}$ Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2\Omega. First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_S = 20\Omega$ Minimum resistance when connected in parallel. $R_p = \frac{2}{10}\Omega$	301.	when temp of conductor increase its conduction	vity decrease and resistiv	nty increase.
Conductivity is reciprocal of resistivity $\frac{\sigma}{\rho} = \sigma^2$ So it decrease. 37. You are given 10 resistors each of resistance 2Ω . First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_S = 20\Omega$ Minimum resistance when connected in parallel. $R_p = \frac{2}{10}\Omega$		$\rho = \frac{1}{\sigma}$		
$\frac{\sigma}{\rho} = \sigma^{2}$ So it decrease. 37. You are given 10 resistors each of resistance 2 Ω . First they are connected to obtain possible minimum resistance. The net they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. R _S = 20 Ω Minimum resistance when connected in parallel. R _p = $\frac{2}{10} \Omega$		Conductivity is reciprocal of resistivity		
So it decrease. 37. You are given 10 resistors each of resistance 2Ω . First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_{\rm S} = 20\Omega$ Minimum resistance when connected in parallel. $R_{\rm p} = \frac{2}{10}\Omega$		$\frac{\sigma}{2} = \sigma^2$		
37. You are given 10 resistors each of resistance 2Ω . First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_s = 20\Omega$ Minimum resistance when connected in parallel. $R_p = \frac{2}{10}\Omega$		p So it decrease		
37. You are given 10 resistors each of resistance 2Ω . First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_{\rm S} = 20\Omega$ Minimum resistance when connected in parallel. $R_{\rm p} = \frac{2}{10}\Omega$		So il declease.		
resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_S = 20\Omega$ Minimum resistance when connected in parallel. $R_p = \frac{2}{10}\Omega$	37	You are given 10 resistors each of resistance	20 First they are conne	ected to obtain possible minimum
and minimum resistance is (A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_{\rm S} = 20\Omega$ Minimum resistance when connected in parallel. $R_{\rm p} = \frac{2}{10}\Omega$	•	resistance. Then they are connected to obta	n possible maximum res	sistance. The ration of maximum
(A) 100 (B) 10 (C) 2.5 (D) 25 Ans. (A) Sol. Maximum resistance when connected in series. $R_s = 20\Omega$ Minimum resistance when connected in parallel. $R_p = \frac{2}{10}\Omega$		and minimum resistance is .		
Ans. (A) Sol. Maximum resistance when connected in series. $R_s = 20\Omega$ Minimum resistance when connected in parallel. $R_p = \frac{2}{10}\Omega$		(A) 100 (B) 10	(C) 2.5	(D) 25
Sol. Maximum resistance when connected in series. $R_{s} = 20\Omega$ Minimum resistance when connected in parallel. $R_{p} = \frac{2}{10}\Omega$	Ans.	(A)		
$R_{s} = 20\Omega$ Minimum resistance when connected in parallel. $R_{p} = \frac{2}{10}\Omega$	Sol.	Maximum resistance when connected in serie	S.	
Minimum resistance when connected in parallel. $R_{p} = \frac{2}{10} \Omega$		R _s = 20Ω		
$R_{p} = \frac{2}{10} \Omega$		Minimum resistance when connected in parall	el.	
		$R_p = \frac{2}{10} \Omega$		
$\therefore \qquad \frac{R_s}{R_p} = \frac{20}{2/10} = 100$		$\therefore \qquad \frac{R_{\rm S}}{R_{\rm P}} = \frac{20}{2/10} = 100$		

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 Image: 1800 2444 888

Culturating for better tomorrow Gujarat Common Entrance Test (GUJCET) 2018 | Physics & Chemistry | 23-04-2018 | Code-17

38. The dimensional formula of mobility is _____.
(A) M⁻¹L¹T²A¹ (B) M¹L⁰T⁻²A⁻¹ (C) M¹L⁻¹T⁻²A⁻¹ (D) M⁻¹L⁰T²A¹
Ans. (D)
Sol. Mobility =
$$\frac{Vd}{E} = \frac{\text{Drift velocity}}{\text{Electric field}}$$

 $= \frac{LT^{-1}}{ML^{-3}A^{-1}} = M^{-1}L^{0}T^{2}A^{1}$
39. An electron having mass 9.1 × 10⁻³¹ kg, charge 1.6 × 10⁻¹⁹ C and moving with the velocity of 10⁶ m/s
enters are region where magnetic field exists. If it describes a circle of radius 0.2 m then the intensity of
magnetic field must be ______ × 10⁻⁵ T.
(A) 14.4 (B) 5.65 (C) 2.84 (D) 1.32
Ans. (C)
Sol. $R = \frac{mv}{qR} \Rightarrow B = \frac{mv}{qR}$
 $B = \frac{9.1 \times 10^{-31} \times 10^6}{1.6 \times 10^{-19} \times 0.2} = \frac{9.1}{1.6 \times 2} \times 10^{-6} = 2.84 \times 10^{-6} T$
40. A galvanometer of resistance 50Ω giving full scale deflection for a current of 10 milliampere is to be
changed into a voltmeter of range 100 V.
A resistance of _____Ω has to be connected in series with the galvanometer
(A) 9950 (B) 10025 (C) 10000 (D) 9975
Ans. (A)
Sol. $\sqrt{\frac{50\Omega}{0}}{0} \frac{G}{0} \frac{R}{10mA}}{\sqrt{10mA}}$
 $\sqrt{\frac{100}{0}} = (R + 50) \times 10 \times 10^{-3}}$
 $R + 50 = 10000 \Rightarrow R = 9950$

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 I Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 I Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Page | 10 |

 Itil Free : 1800 258 5555 I Solog.com/ResonanceEdu

CHEMISTRY

41.	How many grams of Cl ₂ gas will be obtained by with hydrochloric acid ?	the complete reaction	of 31.6 gm of potassium perr	nanganate
	[Mole mass of KMnO ₄ = 316 gm/mol]			
_	(A) 71 (B) 17.75	(C) 35.5	(D) 142	
Ans.	(B)			
Sol.	$2KMnO_4 + 16HCI \longrightarrow 2KCI + 2MnCl_2 + 5Cl_2 +$	8H ₂ O		
	$\frac{\text{mole of KMnO}_4}{\text{mole of KCl}} = \frac{\text{mole of KCl}}{\text{mole of KCl}}$			
	2 5			
	Mole of $Cl_2 = \frac{31.6}{316} \times \frac{5}{2} = \frac{1}{4}$ mole			
	Gram wt. of $Cl_2 = \frac{1}{4} \times 71 = 17.75$ gm.			
42.	What is the structure of XeOF ₄ ?			
	(A) Square pyramidal	(B) Trigonal bipyra	midal	
_	(C) Pyramidal	(D) Square bipyran	nidal	
Ans.	(A)			
501.				
	F K F			
	F			
	Square Phrimidal			
43.	Which one is not an allylic halide ?			
	(A) 3-Chloro cyclo hex -1 - ene	(B) 1 – Chloro but -	- 1 - ene	
	(C) 1 – Chloro but - 2 - ene	(D) 3 – Chloro prop	o – 1 – ene.	
Ans.	(B)			
Sol.	1-chlorobut-1-ene (CH ₃ –CH = CH–Cl) is classified	ed as vinylic halide.		
44.	Which is the main organic product obtained hydroxide?	by the reaction of 2,	2, 2 - trichloro ethanal wit	th calcium
	(A) Methylene chloride	(B) Carbon tetrach	loride	
	(C) Chloroform	(D) Trichloro ethan	е	
Ans.	(C)			
Sol.	CI - C - C H $CI - C H$ $CI - CI - C H$ $CI - CI - CI - CI - CI - CI - CI - CI$	mate		
45.	Which of the following compound is optically ina-	ctive ?		
	(A) 3 - Chloro but - 1 - ene	(B) 2, 3 - Dichloro b	outane	
	(C) 2 - Hydroxy propanoic acid	(D) 2, 2 - Dichloro p	pentane	
Ans.	(D)			

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 (S) 08003 444 888

Sol.	CI I CH ₃ -CH ₂ -CH ₂ -C-CH ₃ L		
	Cl 2, 2–Dichloropentane has no chiral carbon he	nce optically inactive.	
46.	Which of the organic products of the following	reactions has the least bo	iling point ?
	(A) CH ₃ CH ₂ -COOH $\xrightarrow{\text{LiAlH}_4}_{\text{H}_2\text{O}}$	(B) CH ₃ − C − CH ₃ ∥ O	$\xrightarrow{\text{NaBH}_4}_{\text{H}_2\text{O}} \rightarrow$
	(C) CH ₃ -CH ₂ -CHO $\xrightarrow{\text{NaBH}_4}_{\text{H}_2\text{O}}$	(D) CH_3 – $CH=CH_2$	$\xrightarrow{(BH_3)_2} \rightarrow H_2O_2.OH^- \rightarrow$
Ans. Sol.	(B) In (B), isopropyl alcohol is formed, which has because of lesser extent of H-bonding.	s lesser boiling point thar	n propyl alcohol formed in A, C and D,
47.	Which is the final product obtained by the propanone ?	reaction of a grignard re	eagent ethyl Magnesium bromide with
4.00	(A) Pentane - 1 - ol(C) Pentane - 2 - ol	(B) 2 - Methyl – but (D) 3 - Methyl - buta	ane - 2 - ol ane - 2 - ol
Ans.	(B)	он	
Sol.	$CH_{3}-C CH_{3} + CH_{3}CH_{2}MgBr H_{2}O \rightarrow CH_{3}$	$\begin{array}{c} -C \\ -C \\ 2I \\ 3 \\ -C $	
	2-M	lethylbutan-2-ol	
48.	Which is the correct structural formula of Aspir OCOCH ₃ OH	in? OCOCH₃	COOCH₃
Ans.	(C)	\sim	
Sol.	Aspirin is acetyl salicylic acid		
49.	The units for the rate constant and the rate c reaction?	f reaction are same for a	reaction. What will be the order of the
Δne	(A) Second (B) Zero (C) First (D) Third	
Sol.	For zero order Reaction Rate low : $R = k[A]^{\circ}$ Unit of k = mole/liter		

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 (S) 08003 444 888

Resonance®	Gujarat Common Entrance Test (GUJCET) 2018 Physics & Chemistry 23-04-2018 Code-17
------------	---

50.	At 27° C temperature, time required for 75% comp	letion of a first order	reaction is 20 seconds.	What will be its
	rate constant?			
	(A) 0.693 sec ⁻¹ mole ⁻¹ lt	(B) 0.0693 sec ⁻¹	1	
Ane	(C) 0.693 Sec ⁻¹	(D) 0.0693 sec ⁻¹ mo	De [−] ' It	
Sol.	For I st order Reaction :			
	$K = \frac{1}{t} \ln \frac{1}{Ct}$ at 75% completion : Ct = 25%			
	$K = \frac{2.303}{100} \log \frac{100}{100}$; k = 0.0697 sec ⁻¹			
	20 25			
51.	Which statement is incorrect for a catalyst?			
	(A) It does not affect the equilibrium constant			
	(B) It increases the proportion of products in less tin	ne		
	(C) It decreases the activation energy of a reaction			
A	(D) It increases the free energy change for the read	tion		
Ans. Sol	(D) Catalyst not change the free energy change for the	reaction		
001.	outly strict on ange the nee on ongy on ange for the			
52.	During electrophoresis of colloidal sol of Fe(OH) ₃ , the	ne colloidal particles-		
	(A) Move towards anode and cathode both			
	(B) Move towards cathode			
	(C) Move towards anode (D) Do not move			
Ans.	(B)			
Sol.	Fe(OH) ₃ is a type of positive sol. So Partical moves	towards cathode dur	ing electrophoresis.	
53.	In manufacturing of sulphuric acid in presence c	f platinum catalyst,	which metal impurity a	acts as catalytic
	poison?			
Δns	(A) Fe (B) Ci	(C) Cu	(D) v	
Sol.	Reactive metal (impurity) can behave as a negative	e catalyst.		
54.	Which ion has the least value of theoretical magnet	ic moment?		
Ane	(A) Cr^{3+} (B) Co^{3+} (C) Tr^{3+}	(D) V ³⁺	
Sol	Magnetic moment $u = \sqrt{p(n+2)}$ BM			
001.	$Crt^3 = Ar ^2 d^3$ number of unneited $c^2 = 2$			
	$Cr^{\circ} = Ar , 3d$ number of unpaired $e^{-1} = 3$			
	$Cr^{+3} = Ar , 3d^{\circ}$ number of unpaired $e^{-} = 4$			
	$Ti^{+3} = Ar , 3d^1$ number of unpaired $e^- = 1$			
	$V^{+3} = Ar , 3d^2$ number of unpaired $e^- = 2$			
	least magnetic moment shows by Ti ⁺³			

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 [So 08003 444 888 ff facebook.com/ResonanceEdu

		Gujarat Co	ommon Entrance Test	t (GUJCET) 2	018 Physics	s & Chemistry 23-04-2018 C	ode-17
55.	Which of the fo	llowing mix	ture can form an allo	y?			
	(A) Fe, Ni, Cr		(B) Cr, Co, Na	(C) Fe,	Mn, Mg	(D) Ni, Mg, Na	
Ans.	(A)						
Sol.	Fe, Ni, Cr are transition metals can form an alloy.						
56.	Which of the fo	llowing stat	ements is incorrect?				
	(A) K4[Ni(CN)4]	and K ₂ [Ni(CN)4] both have sam	e magnetic n	noment		
	(B) K ₂ [Ni(CN) ₄]	is diamagr	netic while $K_2[NiCl_4]$ is	s paramagne	tic.		
	(C) K ₄ [Ni(CN) ₄]	is square p	planar while K ₂ [Ni(CN	I) ₄] is tetrahe	dral		
	(D) K ₂ [NiCl ₄] ar	nd K4[Ni(CN)،] both have same و	geometrical s	hapes		
Ans.	(C)						
Sol.	K ₄ [Ni(CN) ₄]	\Rightarrow	$Ni^{\circ} = 3d^8 4s^2 Cr \rightarrow 3$	3d ¹⁰ 4s°			
			Hyb. = Sp ³ tetrahedr	al	"DM" (Diai	magnetic)	
	K ₂ [Ni (CN) ₄]	\Rightarrow	$Ni^{+2} = 3d^8 4s^{\circ} \rightarrow 3d^8$	4s°			
			Paring of e				
			Hyb = dsn^2	squate plann	ar "[)M" (Diamagnetic)	
			i iyo dop				
57.	The aqueous s	olution of w	hich of the following	complex has	the least co	nductivity under identical conditi	ions.
••••	(A) Penta aqua	chlorido cl	nromium (III) chloride				
	(B) Tetra aqua	dichlorido d	chromium (III) chloride	e			
	(C) Hexa aqua	chromium	(III) chloride	•			
	(D) Tri aqua tric	chlorido chr	romium (III)				
Ans.	(D)						
Sol.	Compound		ions				
	(A) [Cr(H ₂ O) ₅ C		3				
	(B) [Cr(H ₂ O) ₄ C		2				
	(C) [Cr(H ₂ O) ₆]C	J ₃ 4					
	(D) [Cr(H ₂ O) ₃ C	l ₃]0					
	Conductivity or	der : (D) <	(B) < (A) < (C)				
58.	Which complex	c possess fa	acial isomer?				
	(A) K[Fe(NH ₃) ₂	(CN) ₄]		(B) [Co	(NH ₃) ₃ (NO ₂)	3]	
	(C) [Co(NH ₃) ₄ C	CO3]CI		(D) [Ni((H ₂ O) ₄ (NH ₃)	2]SO4	
Ans.	(B)						
	NH_3		NH ₃				
		NH₃					
	O,N	NH₃	$O_2 N / NO_2$				
	² NO ₂		NH ₃				
Sol.	fac–		mer-				
	The facial(fac)	and meric	dional(mer) isomers	of [Co(NH ₃))₃(NO₂)₃]. (N	l a₃b₃type)	
59.	Which of the fo	llowing is n	ot a final product obta	ained by cros	s aldol con	lensation of ethanal and propan	al?
	(A) 3-Methyl-bu	ut-2-enal		(B) 2-N	lethyl-pent-2	2-enal	
	(C) But-2-enal			(D) Per	nt-2-enal		
Ans.	(A)						

Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | Page Page | 14 | Toll Free : 1800 258 5555 🔊 08003 444 888 🚹 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | www.resonance.ac.in | www.resonance.ac.in | www.resonance.ac.in | www.resonance.ac.in | blog.resonance.ac.in

 Toll Free : 1800 258 55555 S

 Sold 244 888
 F facebook.com/ResonanceEdu

Educa	ting for better tomorrow Gujan	at Common Entrance Test (GUJCET) 2018 Physics	& Chemistry 23-04-201
64.	The number of σ and	π bonds in orange azo dye	is and	respectively
_	(A) 27 and 7	(B) 24 and 7	(C) 26 and 7	(D) 26 and 6
ns.	(C) Н Н	нн		
ol.				
-				
	н́н	н н		
	26 σ and 7 π .			
5.	Which one is a purine	base?		
	(A) Uracil	(B) Thymine	(C) Cytosine	(D) Guanine
ns.	(D)			
ol.				
	N NH ₂			
	H Guanine			
•				
5 .	(A) Glutamic acid	J amino acid nas pH greate	r tnan /? (C) Glycine	(D) Alanine
IS.	(B)			
ol.	Lysine is example of	basic amino acids :		
	^N H ₃ H			
	00C	12-INF13		
,	Which is the correct of	tructural formula for torulan	o?	
•			er	
	(A) + C - 0 - (O)	ССH ₂ О Ш		
	رە	nر 0		
		2-0-CH2-CH2-0-		
		n (
	$fc \rightarrow 0$	с-о-сн₂-сн₂-о-		
ne	رں 🗸 (⁽)	ווע ו		
ol.	Terylene is known as	poly (Ethylene terphthalate	2)	
		Г		
	+c-<<_>-ö-	-O-CH ₂ -CH ₂ -O-		
	L	- J n		

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | www.resonance.ac.in | mww.resonance.ac.in | mww.resonance.ac.in | mage | 16 |

 Toll Free : 1800 258 55555 S

 Solution: So

	SONANC	Gujarat Gujarat	Common En	trance	Test (G	UJCET) 2018	Physics	& Chem	nistry 23-04-2	2018 Code-17
68. Ans. Sol.	Which are the monomers of Buna-N? (A) Buta-1, 3-diene and prop-1-ene-1-nitrile (B) Buta-1, 2-diene and acrylonitrile (C) Buta-1, 3-diene and prop-2-ene-1-nitrile (D) Buta-1, 2-diene and prop-2-ene-1-nitrile (C) $CH_2=CH-C=N$ $3 \ 2 \ 1$ Buna-N is a polymer of Buta-1,3-diene and Acrylonitrile.									
69.	Choose (P) (Q) (R) (S) (A) $P \rightarrow$ (C) $P \rightarrow$	the correct optic Column-I Artificial Sweetr Food Preservat Anti Oxidants Food colours N, Q \rightarrow O, R \rightarrow L, N, Q \rightarrow O, R \rightarrow M,	on for the su ner ive S→M , S→L	itable n	(L) (M) (N) (O) (B) P (D) P-	etween Colur Column-II Caramel Ascorbic acid Alitame Sorbic acid →N, Q →M, R →L, Q →O, R·	mn I and cid I →O, S→	Column →L →N	11	
Ans. Sol.	(C) (P) (Q) (R) (S)	Artificial Sweetr Food Preservat Anti Oxidants Food colours	ner (ive (((N) O) M) L)	Alitam Sorbic Ascort Caram	e acid bic acid nel				
70. Ans. Sol.	Which (A) Offo (C) Lumina	of the following dr oxacin Il is a trade name	rugs gives ro (B) Aspirir for Antianxi	elief fro n iety and	m anxie d antistr	ety and stress (C) Lumina ress drug.	s? al	([D) Mestranol	
71. Ans. Sol.	lf the en (in pm) (A) 200 (C) For BC	dge of a body cer C : $\sqrt{3}$ a = 4 R	ntred unit ce	ell is 40)0 pm, v	what will be th (C) 173	ne approx	ximate r (I	adius of the at	om present in it?
70	$R = \frac{\sqrt{3}}{4}$	$\frac{3a}{4} = \frac{\sqrt{3} \times 400}{4} =$	173 Pm	otic?						
Ans. Sol.	$ \begin{array}{ll} \text{(A) O}_2 & \text{(B) CrO}_2 & \text{(C) MnO} & \text{(D) Fe}_3\text{O}_4 \\ \text{(B)} \\ \text{Ferromagnetic substance : CrO}_2 \end{array} $									
73. Ans.	What is (A) 1 N (C)	the normality of a	aqueous so (B) 0.05 N	lution c	of H₂SC	•₄ having pH = (C) 0.1 N	= 1.	[]	D) 0.5 N	

/ Resonance®

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.:
 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more:
 sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in Page | 17 | Toll Free : 1800 258 5555 💿 08003 444 888 🚹 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu 🔠 www.youtube.com/resowatch 🕒 blog.resonance.ac.in

	sonance	Gujarat Common Entrance T	est (GUJCET) 2018 Physic	s & Chemistry 23-04-2018 C	ode-17			
Sol.	PH = 1 [H ⁺] = 10 N of H ₂ SO ₄ = 0.1	^{−1} M 1 N						
74.	Which of the following mixture is non-ideal solution?(A) Chloroform and acetone(B) Benzene and toluene(C) Chlorobenzene and bromobenzene(D) Bromoethane and chloroethane							
Ans. Sol.	(A) CHCl ₃ + CH ₃ COCH ₃ is non – ideal solution mixture. [Show (–)ve deviation)							
75. Ans. Sol.	Which solution is (A) 0.25 M NaCl (B) For isotonic sol ⁿ $\pi_1 = \pi_2$ $i_1 c_1 = i_2 c_2$ $1\left[\frac{6 \times 1000}{60 \times 100}\right] = 2$ = M = 0.5 = 0.5 M NaC ℓ .	s isotonic with 6% W/V aque (B) 0.5 M NaCl 2 [M]	eous solution of urea? [Mole (C) 0.1 M NaCl	e mass of Urea = 60 gm. mol [–]] (D) 1 M NaCl				
76.	In which metal co $E_{Cu^{2+}/Cu}^{o} = 0.34$ $E_{Fe/Fe^{2+}}^{o} = 0.44$ $E_{Ni/Ni^{2+}}^{o} = 0.25$ V	ontainer, the aqueous soluti V V, $E^{o}_{AI/AI^{3+}} = 1.66$ V V, $E^{o}_{Ag^+/Ag} = 0.80$ V (B) Ni	ion of CuSO₄ can be stored	? (D) Al				
Ans. Sol.	(A) SRP value of Ag So CuSO₄ can s	tore in Ag container.						
77.	For how much time, 10 ampere electric current should be passed through a dilute aqueous NiSO ₄ solution during electrolysis using inert electrode, in order to get 5.85 gm Nickel? [At. mass of Ni = 58.5 gm]							
Ans. Sol.	(A) 965 sec. (C) w = zit $5.85 = \frac{58.5}{2 \times 9650}$ t = 1930 sec	(B) 3860 sec. — ×10 × t	(C) 1930 sec.	(D) 9650 sec.				

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

 Toll Free : 1800 258 5555 [So 08003 444 888 ff facebook.com/ResonanceEdu

78. What will be the oxidation potential for the following hydrogen half cell at 1 bar pressure and 25° C temperature ?

	Pt H _{2(g)} 1bar	$HCl_{(aq)}pH = 3$						
	(A) 0.059 V	(B) 0.188 V	(C) 0.177 V	(D) 0.000 V				
Ans.	(C)							
Sol.	For oxidation							
	$\frac{1}{2}H_2(g)\longrightarrow H^+$	(aq)+e ⁻						
	P = 1 atm							
	$E_{OP} = E_{OP}^{O} \frac{-0.05}{1}$	9 – log [H⁺]						
	E _{OP} =0 + 0.059 pł	4						
	= 0.059 × 3 = 0.17	7 V						
79.	Which ore does no	ot contain carbonate?						
A no	(A) Calamine	(B) Ciderite	(C) Malachite	(D) Zincite				
Ans. Sol	(D) Zincite = ZnO							
501.								
80.	Which is the corre	ct order of metallurgy for the	e extraction of copper meta	l?				
	(A) Concentration	\rightarrow smelting \rightarrow bessimerisa	tion \rightarrow roasting					
	(B) Concentration	\rightarrow smelting \rightarrow roasting \rightarrow k	pessimerisation					
	(C) Concentration \rightarrow roasting \rightarrow smelting \rightarrow bessimerisation							
	(D) Concentration	\rightarrow roasting \rightarrow bessimerisation	tion \rightarrow smelting					
Ans.	(C)							
Sol.	Order of metallurg	y for extraction of Cu metal	from copper pyrites (Cu Fe	eS_2) is (C) :				
	Concentration \rightarrow I	roasting \rightarrow Smelting \rightarrow Bes	simerisation					

Resonance Eduventures Limited

 Registered & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005

 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

 To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in | www.resonance.ac.in | www.resonance.ac.in | muw.resonance.ac.in | muw.r

