GUJARAT COMMON ENTRANCE TEST（GUJCET） 2018

Date： 23 April， 2018 ｜Duration： 2 Hours｜Max．Marks： 80

：：IMPORTANT INSTRUCTIONS ：：

1．The Physics and Chemistry test consists of 80 questions．Each question carries 1 mark．For each correct response，the candidate will get 1 mark．For each incorrect response $1 / 4$ mark will be deducted．The maximum marks are 80 ．
2．This test is of 2 hrs ．duration．
3．Use Black Ball Point Pen only for writing particulars on OMR Answer Sheet and marking answer by darkening the circle＇\bullet＇．
4．Rough work is to be done on the space provided for this purpose in the Test Booklet only．
5．On completion of the test，the candidate must handover the Answer Sheet to the Invigilator in the Room／Hall．The candidates are allowed to take away this Test Booklet with them．
6．The Set No．for this Booklet is 17．Make sure that the Set No．printed on the Answer Sheet is the same as that on this booklet．In case of discrepancy，the candidate should immediately．
7．The candidate should ensure that the Answer Sheet is not folded．Do not make any stray marks on the Answer Sheet．
8．Do not write you Seat No．anywhere else，except in the specified space in the Test Booklet／Answer Sheet．
9．Use of White fluid for correction is not permissible on the Answer Sheet．
10．Each candidate must show on demand his／her Admission Card to the Invigilator．
11．No candidate，without special permission of the Superintendent or Invigilator，should leave his／her sent．
12．Use of Manual Calculator is permissible．
13．The candidate should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and must sign the Attendance Sheet（Patrak－01）．Cases where a candidate has not signed the Attendance Sheet（Patrak－01） will be deemed not to have handed over the Answer Sheet and will be dealt with as an unfair means case．
14．The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall．All cases of unfair means will be dealt with as per Rules and Regulations of the Board．

15．No part of the Test Booklet and Answer Sheet shall be detached under any circumstances．
16．The candidates will write the Correct Test Booklet Set No．As given in the Test Booklet／Answer Sheet in the Attendance Sheet．（Patrak－01）

Candidate＇s Name

\qquad
\qquad
Exam．Centre No．
Test Booklet Set No． ．Test Booklet No．

Candidate＇s Sign \qquad Block Supervisor Sign． \qquad

Resonance Eduventures Ltd．

Registered \＆Corporate Office：CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Raj．）－324005 Tel．No．：0744－6607777，3012100，3012222，6635555｜Toll Free： 18002585555 ｜Fax：＋91－022－39167222｜ 08003444888 Website：www．resonance．ac．in｜E－mail：contact＠resonance．ac．in｜CIN：U80302RJ2007PLC02402908003444888
facebook．com／ResonanceEdutwitter．com／ResonanceEduwww．youtube．com／resowatchblog．resonance．ac．in

Educating for better tomorrow

TOTAL NO. OF SELECTIONS in JEE (Advanced) 2017

Classrooms - 4095 | DLPD + ELPD - 2146

TOTAL NO. OF SELECTIONS in JEE (Main) 2017

Classrooms - 17800 | DLPD + ELPD - 6719

ADMISSIONS OPEN

Classes: V to XII \& XII+
Target: JEE (Main+Advanced) JEE (Main) | AlIMS/ NEET Pre-foundation | Commerce \& CLAT

ResoNET Dates
$6^{\text {th }} \& 13^{\text {th }}$ May 2018
Test Timings: 9 AM to 12 Noon

PHYSICS

1. Two parallel very long straight wires carrying current of 5 A each are kept at a separation of 1 m . If the currents are in the same direction, the force per unit length between them is \qquad $\mathrm{N} / \mathrm{m} .\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{SI}\right]$
(A) 5×10^{-5}, attractive
(B) 5×10^{-6}, attractive
(C) 5×10^{-5}, repulsive
(D) 5×10^{-6}, repulsive

Ans. (B)
Sol. $\frac{F}{\ell}=\frac{\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2}}{2 \pi \mathrm{~d}}=2 \times 10^{-7} \times \frac{5 \times 5}{1}=5 \times 10^{-6}$, attractive
2. A very long straight wire of radius r carries current I. Intensity of magnetic field B at a point, lying at a perpendicular distance 'a' from the axis is \propto \qquad -.
(A) a^{2}
(B) $\frac{1}{a^{2}}$
(C) $\frac{1}{a}$
(D) a

Ans. (D)
Sol.

$B \times 2 \pi a=\mu_{0} \times \frac{I}{\pi r^{2}} \times \pi \mathrm{a}^{2}$
$B=\frac{\mu_{0} I}{2 \pi r^{2}} a$
$B \propto a$
3. A substance is placed in a non uniform magnetic field. It experiences weak force towards the strong field. The substance is \qquad type.
(A) Ferromagnetic
(B) Diamagnetic
(C) Paramagnetic
(D) None of these

Ans. (C)
4. The relation between B_{h}, B_{v} and B is \qquad
(A) $B=\sqrt{B_{h}^{2}+B_{v}^{2}}$
(B) $B=B_{h} \cdot B_{v}$
(C) $B=\frac{B_{v}}{B_{h}}$
(D) $B=\frac{B_{h}}{B_{v}}$

Ans. (A)
Sol.

$B=\sqrt{B_{v}^{2}+B_{h}^{2}}$

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in
Toll Free : 18002585555
08003444888 facebook.com/ResonanceEdu twitter.com/ResonanceEdu www.youtube.com/resowatch \square Page | 1 |
5. Two thin lenses of focal length f_{1} and f_{2} are in contact and coaxial. The power of the combination is \qquad
(A) $\frac{1}{\sqrt{\mathrm{f}_{1} \mathrm{f}_{2}}}$
(B) $\frac{\mathrm{f}_{1}+\mathrm{f}_{2}}{2}$
(C) $\frac{\mathrm{f}_{1} \mathrm{f}_{2}}{\mathrm{f}_{1}+\mathrm{f}_{2}}$
(D) $\frac{f_{1}+f_{2}}{f_{1} f_{2}}$

Ans. (D)
Sol. $\frac{1}{f_{e g}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{f_{1}+f_{2}}{f_{1} f_{2}}=P_{\text {eg }}$
6. On decreasing the wavelength of incident light from $8000 \AA$ to $4000 \AA$. The intensity of the scattered light in Rayleigh scattering will become \qquad times the initial scattered intensity.
(A) 2
(B) 4
(C) 16
(D) 8

Ans. (C)
Sol. $\quad \mathrm{I} \propto \frac{1}{\lambda^{4}}$

$$
\Rightarrow \quad \frac{I_{f}}{I_{i}}=\left(\frac{\lambda_{i}}{\lambda_{f}}\right)^{4}=\left(\frac{8}{4}\right)^{4}=2^{4}=16
$$

7. A small angled prism of refractive index 1.6 gives a deviation of 3.6°. The angle of prism is \qquad .
(A) 7°
(B) 6°
(C) 5°
(D) 8°

Ans. (B)
Sol. $\delta=(n-1) A$
$\Rightarrow \quad 3.6^{\circ}=0.6 \mathrm{~A} \quad \Rightarrow \quad A=6^{\circ}$
8. A plano convex lens is made of material having refractive index 1.5. The radius of curvature of curved surface is 60 cm . The focal length of the lens is \qquad cm .
(A) -60
(B) 120
(C) 60
(D) -120

Ans. (B)
Sol.

$\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\Rightarrow \quad \frac{1}{\mathrm{f}}=0.5\left(\frac{1}{60}\right)=\frac{1}{120}$
$f=120$

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

Toll Free : 1800258555
facebook.com/ResonanceEdu
twitter.com/ResonanceEdu
www.youtube.com/resowatch
9. If the uncertainty in the position of an electron is $10^{-10} \mathrm{~m}$, then the value of uncertainty in its momentum will be \qquad $\mathrm{kgms}^{-1} .\left(\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right]$
(A) 1.05×10^{-24}
(B) 1.03×10^{-24}
(C) 1.06×10^{-24}
(D) 1.08×10^{-24}

Ans. (A)
Sol. $\Delta x \Delta P \geq \frac{h}{2 \pi}$
$\Rightarrow \quad \Delta \mathrm{P} \geq \frac{6.62 \times 10^{-34}}{2 \times 3.14 \times 10^{-10}}$
$\Delta \mathrm{P} \geq 1.05 \times 10^{-24}=1.0536 \times 10^{-24}$
10. If the energy of photons corresponding to wavelength of $6000 \AA$ is $3.2 \times 10^{-19} \mathrm{~J}$. The photon energy for wavelength of $4000 \AA$ will be \qquad —.
(A) $4.44 \times 10^{-19} \mathrm{~J}$
(B) $2.22 \times 10^{-19} \mathrm{~J}$
(C) $1.11 \times 10^{-19} \mathrm{~J}$
(D) $4.80 \times 10^{-19} \mathrm{~J}$

Ans. (D)
Sol. $E=\frac{h c}{\lambda}$
$3.2 \times 10^{-19}=\frac{h c}{6000} \Rightarrow h c=6000 \times 3.2 \times 10^{-19}$
$E=\frac{h c}{\lambda}=\frac{6000}{4000} \times 3.2 \times 10^{-19}=4.8 \times 10^{-19} \mathrm{~J}$
11. Two inductors each of inductance L are connected in parallel. One more inductor of value 5 mH is connected in series of this configuration then the effective inductance is 15 mH . The value of L is \qquad mH .
(A) 10
(B) 5.0
(C) 2.5
(D) 20

Ans. (D)
Sol.

$\frac{\mathrm{L}}{2}+5=15$
$\mathrm{L}=20 \mathrm{mH}$
12. A lamp consumes only 50% of maximum power in an A.C. circuit. What is the phase difference between the applied voltage and the circuit current?
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{6}$
(D) $\frac{\pi}{2}$

Ans. (B)

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

Sol. $\quad P_{\text {avg }}=V_{r m s} I_{\text {rms }} \cos \phi$
$P_{\text {max }}=V_{\text {rms }} I_{\text {rms }}$
$\Rightarrow \frac{\mathrm{V}_{\mathrm{rss}} \mathrm{I}_{\mathrm{rms}}}{2}=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \cos \phi$
$\Rightarrow \cos \phi=\frac{1}{2}$
$\phi=\frac{\pi}{3}$
13. A capacitor ' C ' is connected across a D.C. source, the reactance of capacitor will be \qquad .
(A) ZERO
(B) HIGH
(C) LOW
(D) INFINITE

Ans. (D)
Sol. $\quad X_{C}=\frac{1}{\omega C}, \omega=0$
14. The dimensional formula of $\mu_{0} \in 0$ is \qquad
(A) $\mathrm{M}^{0} \mathrm{~L}^{-2} \mathrm{~T}^{2}$
(B) $\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
(C) $\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}$
(D) $\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{1}$

Ans. (A)
Sol. $C=\frac{1}{\sqrt{\mu_{0} \in_{0}}} \Rightarrow \mu_{0} \in_{0}=\frac{1}{C^{2}}$
$\mathrm{C} \rightarrow \mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}$
$\frac{1}{\mathrm{C}^{2}} \rightarrow \mathrm{M}^{0} \mathrm{~L}^{-2} \mathrm{~T}^{2}$
15. Match Column I and Column II

Column-I

(i) Interference
(ii) Brewster's Law
(iii) Malus Law
(iv) Total Internal reflection
(A) $\mathrm{i} \rightarrow \mathrm{P}, \mathrm{ii} \rightarrow \mathrm{S}$, iii $\rightarrow R$, iv $\rightarrow Q$
(B) $\mathrm{i} \rightarrow \mathrm{P}$, ii \rightarrow R, iii \rightarrow S, iv \rightarrow Q
(C) $\mathrm{i} \rightarrow$ Q, ii \rightarrow S, iii \rightarrow, , iv $\rightarrow P$
(D) $\mathrm{i} \rightarrow \mathrm{R}$, ii \rightarrow Q, iii $\rightarrow \mathrm{S}$, iv $\rightarrow P$

Ans. (B)
Sol. (i) $\rightarrow P$
(ii) $\quad \rightarrow \mathrm{R}$

Brew ster's Law

$$
\Rightarrow \mu=\tan \mathrm{i}_{\mathrm{p}}
$$

(iii) $\quad \rightarrow \mathrm{S}$

Malus law

$$
\mathrm{I}=\mathrm{I}_{0} \cos ^{2} \phi
$$

(iv)

$$
\rightarrow Q
$$

TIR
$\mu \sin C=1 \Rightarrow \mu=\frac{1}{\sin C}$

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in
16. Frequencies of various radiations are given as

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{v}} \rightarrow \text { Visible light } \\
& \mathrm{f}_{\mathrm{r}} \rightarrow \text { Radio waves } \\
& \mathrm{f}_{\mathrm{uv}} \rightarrow \text { Ultra Violet waves }
\end{aligned}
$$

Then which of following is true ?
(A) $f_{u v}<f_{v}<f_{r}$
(B) $\mathrm{f}_{\mathrm{r}}<\mathrm{f}_{\mathrm{v}}<\mathrm{f}_{\mathrm{uv}}$
(C) $\mathrm{f}_{\mathrm{v}}<\mathrm{f}_{\mathrm{r}}<\mathrm{f}_{\mathrm{uv}}$
(D) $f_{u v}<f_{r}<f_{v}$

Ans. (B)
Sol. $\lambda_{u v}<\lambda_{v}<\lambda_{r}$
$f_{u v}>f_{v}>f_{r}$
17. Wavelength of characteristic X-ray depends on which property of target ?
(A) A
(B) Z
(C) Melting point
(D) All of these

Ans. (B)
Sol. Wavelength of characteristic x-ray depends on material used as the metal target (Z)
18. The energy of the fast neutrons emitted in a nuclear fission reactor is approximately \qquad
(A) 2 MeV
(B) 2 KeV
(C) 10 MeV
(D) 20 MeV

Ans. (A)
Sol. 2 MeV
19. in radioactive reaction ${ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} X_{1} \rightarrow{ }_{Z+2}^{A} X_{2} \rightarrow{ }_{Z}^{A-4} X_{3} \rightarrow{ }_{Z+1}^{A-4} X_{4}$
successive emission of particles is
(A) $\beta^{-}, \beta^{-}, \beta^{-}, \alpha$
(B) $\beta^{-}, \beta^{-}, \beta^{+}, \alpha$
(C) $\beta^{-}, \beta^{-}, \alpha, \alpha$
(D) $\beta^{-}, \beta^{-}, \alpha, \beta^{-}$

Ans. (D)
Sol.
${ }_{Z}^{A} X \longrightarrow{ }_{Z+1}^{A} X_{1}+\beta^{-}$
${ }_{Z+1}^{A} X_{1} \longrightarrow{ }_{Z+2}^{A} X_{2}+\beta^{-}$
${ }_{Z+2}^{A} X_{2} \longrightarrow{ }_{Z}^{A-4} X_{3}+\alpha$
${ }_{\mathrm{Z}}^{\mathrm{A}-4} \mathrm{X}_{3} \longrightarrow{ }_{\mathrm{Z}+1}^{\mathrm{A}-4} \mathrm{X}_{4}+\beta^{-}$
20. In CE transistor amplifier, the collector junction has \qquad bias and emitter junction has \qquad bias.
(A) reverse, reverse
(B) forward, forward
(C) reverse, forward
(D) forward, reverse

Ans. (C)
Sol. For operation in active region (i.e., for amplification to work) the collector-base junction is reverse biased while emitter-base junction is forward biased.
21. When carrier wave of 2.5 MHz frequency is amplitude modulated, the resulting $A M$ wave has maximum of 15 V and minimum amplitude of 10 V . The modulation index is \qquad -
(A) 30%
(B) 20%
(C) 10\%
(D) 40\%

Ans. (B)
Sol. Molulation Index $=\frac{\mathrm{v}_{\mathrm{m}}}{\mathrm{v}_{\mathrm{c}}}=\frac{\frac{\left(\mathrm{v}_{\max }-\mathrm{v}_{\text {min }}\right)}{2}}{\frac{\left(\mathrm{v}_{\text {max }}+\mathrm{v}_{\text {min }}\right)}{2}}$

$$
=\frac{15-10}{15+10} \times 100 \%=20 \%
$$

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in
Toll Free : 18002585555
(1) 08003444888
facebook.com/ResonanceEdu
twitter.com/ResonanceEdu www.youtube.com/resowatch
22. Which of the following is wrong for interference fringes?
(A) Fringes are due to limited portion of wave front
(B) All bright fringes are equally bright
(C) Distance between two consecutive fringes is constant
(D) Fringes are due to the use of coherent sources

Ans. (C)
23. A ray of light traveling in impure water is incident on a glass plate immersed in it. When the angle of incidence is 51°, the reflected ray is totally plane polarized. Given that refractive index of impure water is 1.4. The refractive index of glass should be \qquad .$\left(\tan 51^{\circ}=1.235\right)$
(A) 1.64
(B) 1.34
(C) 1.53
(D) 1.73

Ans. (D)
Sol. $\quad \theta_{i}+\theta_{r}=\frac{\pi}{2}$
Applying snell's law :
$\mu_{\text {water }} \sin \theta_{\text {l }}=\mu_{\text {glass }} \sin \theta_{r}=\mu_{\text {glass }} \cos \theta_{r}$
$\Rightarrow \quad \mu_{\text {glass }}=1.4 \times \tan 51^{\circ}=1.4 \times 1.235 \approx 1.73$
24. A coil having 200 turns has a surface area of $0.15 \mathrm{~m}^{2}$. A magnetic field of strength 0.2 T applied perpendicular to this changes to 0.6 T in 0.4 s , then the induced emf in the coil is \qquad V.
(A) 45
(B) 30
(C) 15
(D) 60

Ans. (B)
Sol. $\phi=n \times A \times B$
where $\mathrm{n} \equiv$ No. of turns

$$
\begin{array}{ll}
& \\
& A \equiv \text { Area of loop } \\
& B \equiv \text { Magnetic field } \\
\therefore \quad & \varepsilon=\frac{\Delta \phi}{\Delta t}=n A \frac{\Delta \mathrm{~B}}{\Delta t} \\
=200 \times 0.15 \times \frac{0.6-0.2}{0.4}=30 \mathrm{~V}
\end{array}
$$

25. A sinusoidal A.C. current flows through a resistor of resistance 10Ω. If the peak current is 2 A flowing through the resistor then the power dissipated in \qquad W.
(A) 30
(B) 20
(C) 10
(D) 40

Ans. (B)
Sol. Average power dissipated $=<I^{2}(t) R>$

$$
\begin{aligned}
& =\left\langle I_{0}{ }^{2} R \sin ^{2}(\omega t)\right\rangle \\
& =I_{0}{ }^{2} R\left\langle\sin ^{2}(\omega t)\right\rangle \\
& =4 \times 10 \times 1 / 2 \\
& =20 \mathrm{watt} .
\end{aligned}
$$

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in Toll Free : 18002585555 \square
26. Which of following gates produces output of 1 ?
(A)

(B)

(C)

(D)

Ans. (B)
Sol. Output of circuit (B) is $\overline{0.0}=\overline{0}=1$
27. The value of β of a transistor is 19 . The value of α will be
(A) 0.93
(B) 0.98
(C) 0.99
(D) 0.95

Ans. (D)
Sol. $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}$

$$
\begin{array}{llll}
\Rightarrow & \frac{\mathrm{I}_{\mathrm{E}}}{\mathrm{I}_{\mathrm{C}}}=\frac{\mathrm{I}_{\mathrm{B}}}{\mathrm{I}_{\mathrm{C}}}+1 & \Rightarrow & \frac{1}{\alpha}=\frac{1}{\beta}+1=\frac{1}{19}+1 \\
\Rightarrow & \frac{1}{\alpha}=\frac{20}{19} & \Rightarrow & \alpha=\frac{19}{20}=0.95
\end{array}
$$

28. If the half-life of a radioactive element is 10 hr , its average life $=$ \qquad
(A) 1.44
(B) 6.93
(C) 14.4
(D) 0.693

Ans. (C)
Sol. $\quad \lambda t_{1 / 2}=\ell n 2=0.693$
$\Rightarrow \mathrm{t}_{\text {avg }}=\frac{1}{\lambda}=\frac{\mathrm{t}_{1 / 2}}{\ell \mathrm{n} 2}=\frac{10}{0.693} \Rightarrow \mathrm{t}_{\text {avg }}=14.4$
29. \qquad is the wavelength of photon of energy 35 Kev .
$\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$.
(A) $35 \times 10^{-12} \mathrm{~m}$
(B) $35 \AA$
(C) 3.5 nm
(D) $3.5 \AA$

Ans. (A)
Sol. $\lambda=\frac{h c}{\mathrm{E}_{\gamma}}=\frac{6.625 \times 10^{-34} \times 3 \times 10^{8}}{35 \times 10^{3} \times 1.6 \times 10^{-19}} \mathrm{~m}$
$=0.35 \times 10^{-10} \mathrm{~m}=35 \times 10^{-12} \mathrm{~m}$
30. The band gaps of an insulator, conductor and semi conductor are respectively $\mathrm{E}_{\mathrm{g} 1}, \mathrm{E}_{\mathrm{g} 2}$ and $\mathrm{E}_{\mathrm{g} 3}$. The relationship between them is given as \qquad .
(A) $E_{g 1}>E_{g 2}<E_{g 3}$
(B) $E_{g 1}>E_{g 2}>E_{g 3}$
(C) $E_{g 1}<E_{g 2}>E_{g 3}$
(D) $\mathrm{E}_{\mathrm{g} 1}<\mathrm{E}_{\mathrm{g} 2}<\mathrm{E}_{\mathrm{g} 3}$

Ans. (A)
Sol. Band gap of Insulator is highest, while that of conductor is least. So,
$\mathrm{Eg}_{1}>\mathrm{Eg}_{3}>\mathrm{Eg}_{2}$
$\mathrm{Eg}_{1}>\mathrm{Eg}_{2}$
$\mathrm{Eg}_{3}>\mathrm{Eg}_{2}$
$\mathrm{Eg}_{1}>\mathrm{Eg}_{2}<\mathrm{Eg}_{3}$

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in
Toll Free : 1800258555508003444888 [f tacebook.com/Resonaneefiu
twitter.com/ResonanceEdu
www.youtube.com/resowatch
31. Three identical charges are placed on three vertices of a square. If the force acting between q_{1} and q_{2} is F_{12} and between $q_{1} \& q_{3}$ is F_{13} then $\frac{F_{13}}{F_{12}}=$ \qquad -
(A) $\frac{1}{2}$
(B) 2
(C) $\frac{1}{\sqrt{2}}$
(D) $\sqrt{2}$

Ans. (A)

Sol.

$f_{12}=\frac{K q^{2}}{a^{2}}$
$f_{13}=\frac{K q^{2}}{(\sqrt{2} a)^{2}}=\frac{K q^{2}}{2 a^{2}}$
$\frac{f_{13}}{f_{12}}=\frac{1}{2}$
32. When a $10 \mu \mathrm{C}$ charge is enclosed by a closed surface, the flux passing through the surface is ϕ. Now another $10 \mu \mathrm{C}$ charge is placed inside the closed surface, then the flux passing through the surface is
\qquad -.
(A) 4ϕ
(B) ϕ
(C) 2ϕ
(D) zero

Ans. (C)
Sol. Electric flux $=\frac{q_{\text {inc }}}{\varepsilon_{0}}$
$\phi=\frac{10 \mu \mathrm{C}}{\varepsilon_{0}}$
If more 10 mC charge is placed.
Electric flux $=\frac{20 \mu \mathrm{C}}{\varepsilon_{0}}=2 \phi$
33. The electric force acting between two point charges kept at a certain distance in vacuum is 16 N . If the same two charges are kept at the same distance in a medium of dielectric constant 8 . The electric force acting between them is \qquad N .
(A) 1024
(B) 128
(C) 16
(D) 2

Ans. (C)
33.
A
$\stackrel{\bullet}{B}$

Electric force acting between them is same as it was in vaccum so,
$\mathrm{Ans}=16 \mathrm{~N}$
Net force on each charge $=\frac{16}{8}=2 \mathrm{~N}$

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in
Toll Free : 18002585555
(9) 08003444888
facebook.com/ResonanceEdu twitter.com/ResonanceEduwww.youtube.com/resowatch \square log.resonance.ac.in
34. The unit of polarizabity of the molecule is: \qquad .
(A) $\mathrm{C}^{2} \mathrm{~m}^{1} \mathrm{~N}^{-1}$
(B) $\mathrm{C}^{-2} \mathrm{~m}^{-1} \mathrm{~N}^{1}$
(C) $\mathrm{C}^{-2} \mathrm{~m}^{1} \mathrm{~N}^{-1}$
(D) $\mathrm{C}^{2} \mathrm{~m}^{-1} \mathrm{~N}^{-1}$

Ans. (A)
Sol. Polarizability (α) is the ratio of induced dipole moment to the electric field E.

$$
\begin{aligned}
& \alpha=\frac{P}{E} \\
& \Rightarrow \quad \frac{\mathrm{Cm}}{\mathrm{~N} / \mathrm{C}}=\mathrm{c}^{2} \mathrm{mN}^{-1}
\end{aligned}
$$

35. On the axis and on the equator of an electric dipole for all points \qquad .
(A) On both of them $V \neq 0$
(B) On both of them $V=0$
(C) On the axis $V=0$ and on equator $V \neq 0$
(D) On the axis $V \neq 0$ and on equator $V=0$

Ans. (D)
Sol. On the axis $v \neq 0$ and on equator, $v=0$
36. When the temperature of a conductor increases the ration of conductivity and resistivity \qquad -.
(A) remain constant
(B) increase
(C) decrease
(D) increase or decrease

Ans. (C)
Sol. When temp of conductor increase its conductivity decrease and resistivity increase.
$\rho=\frac{1}{\sigma}$
Conductivity is reciprocal of resistivity
$\frac{\sigma}{\rho}=\sigma^{2}$
ρ
So it decrease.
37. You are given 10 resistors each of resistance 2Ω. First they are connected to obtain possible minimum resistance. Then they are connected to obtain possible maximum resistance. The ration of maximum and minimum resistance is \qquad .
(A) 100
(B) 10
(C) 2.5
(D) 25

Ans. (A)
Sol. Maximum resistance when connected in series.

$$
\mathrm{R}_{\mathrm{S}}=20 \Omega
$$

Minimum resistance when connected in parallel.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{p}}=\frac{2}{10} \Omega \\
\therefore \quad & \frac{\mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{\mathrm{p}}}=\frac{20}{2 / 10}=100
\end{aligned}
$$

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in
Toll Free : 18002585555
(9) 08003444888
facebook.com/ResonanceEdu
twitter.com/ResonanceEdu
www.youtube.com/resowatch
38. The dimensional formula of mobility is \qquad .
(A) $M^{-1} L^{1} T^{2} A^{1}$
(B) $\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-2} \mathrm{~A}^{-1}$
(C) $M^{1} L^{-1} T^{-2} A^{-1}$
(D) $M^{-1} L^{0} T^{2} A^{1}$

Ans. (D)
Sol. Mobility $=\frac{\mathrm{Vd}}{\mathrm{E}}=\frac{\text { Drift velocity }}{\text { Electric field }}$

$$
=\frac{\mathrm{LT}^{-1}}{\mathrm{MLT}^{-3} \mathrm{~A}^{-1}}=\mathrm{M}^{-1} \mathrm{~L}^{0} \mathrm{~T}^{2} A^{1}
$$

39. An electron having mass $9.1 \times 10^{-31} \mathrm{~kg}$, charge $1.6 \times 10^{-19} \mathrm{C}$ and moving with the velocity of $10^{6} \mathrm{~m} / \mathrm{s}$ enters are region where magnetic field exists. If it describes a circle of radius 0.2 m then the intensity of magnetic field must be \qquad $\times 10^{-5} \mathrm{~T}$.
(A) 14.4
(B) 5.65
(C) 2.84
(D) 1.32

Ans. (C)
Sol. $\quad R=\frac{m v}{q B} \Rightarrow B=\frac{m v}{q R}$
$B=\frac{9.1 \times 10^{-31} \times 10^{6}}{1.6 \times 10^{-19} \times 0.2}=\frac{9.1}{1.6 \times 2} \times 10^{-6}=2.84 \times 10^{-6} \mathrm{~T}$
40. A galvanometer of resistance 50Ω giving full scale deflection for a current of 10 milliampere is to be changed into a voltmeter of range 100 V .
A resistance of \qquad Ω has to be connected in series with the galvanometer
(A) 9950
(B) 10025
(C) 10000
(D) 9975

Ans. (A)
Sol.

Resonance Eduventures Limited

To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

CHEMISTRY

41. How many grams of Cl_{2} gas will be obtained by the complete reaction of 31.6 gm of potassium permanganate with hydrochloric acid?
[Mole mass of $\mathrm{KMnO}_{4}=316 \mathrm{gm} / \mathrm{mol}$]
(A) 71
(B) 17.75
(C) 35.5
(D) 142

Ans. (B)
Sol. $2 \mathrm{KMnO}_{4}+16 \mathrm{HCl} \longrightarrow 2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+5 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
$\frac{\text { mole of } \mathrm{KMnO}_{4}}{2}=\frac{\text { mole of } \mathrm{KCl}}{5}$
Mole of $\mathrm{Cl}_{2}=\frac{31.6}{316} \times \frac{5}{2}=\frac{1}{4}$ mole
Gram wt. of $\mathrm{Cl}_{2}=\frac{1}{4} \times 71=17.75 \mathrm{gm}$.
42. What is the structure of XeOF_{4} ?
(A) Square pyramidal
(B) Trigonal bipyramidal
(C) Pyramidal
(D) Square bipyramidal

Ans. (A)
Sol. XeOF_{4}

Square Phrimidal

43. Which one is not an allylic halide ?
(A) 3-Chloro cyclo hex -1 - ene
(B) 1-Chloro but - 1 - ene
(C) 1 - Chloro but - 2 - ene
(D) 3 - Chloro prop - 1 - ene.

Ans. (B)
Sol. 1-chlorobut-1-ene $\left(\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{Cl}\right)$ is classified as vinylic halide.
44. Which is the main organic product obtained by the reaction of 2, 2, 2- trichloro ethanal with calcium hydroxide?
(A) Methylene chloride
(B) Carbon tetrachloride
(C) Chloroform
(D) Trichloro ethane

Ans. (C)

Sol.

45. Which of the following compound is optically inactive ?
(A) 3 - Chloro but - 1 - ene
(B) 2, 3 - Dichloro butane
(C) 2 - Hydroxy propanoic acid
(D) 2, 2 - Dichloro pentane

Ans. (D)

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in
The:blog.resonanace.ac.in

Sol.

2, 2-Dichloropentane has no chiral carbon hence optically inactive.
46. Which of the organic products of the following reactions has the least boiling point ?
(A)

(B)

(C)

(D)

Ans. (B)
Sol. In (B), isopropyl alcohol is formed, which has lesser boiling point than propyl alcohol formed in A, C and D, because of lesser extent of H -bonding.
47. Which is the final product obtained by the reaction of a grignard reagent ethyl Magnesium bromide with propanone?
(A) Pentane - 1-ol
(B) 2-Methyl - butane - 2 - ol
(C) Pentane-2-ol
(D) 3-Methyl - butane - 2-ol

Ans. (B)

Sol.

48. Which is the correct structural formula of Aspirin?
(A)

(B)

(C)

(D)

Ans. (C)

Sol. Aspirin is acetyl salicylic acid

49. The units for the rate constant and the rate of reaction are same for a reaction. What will be the order of the reaction?
(A) Second
(B) Zero
(C) First
(D) Third

Ans. (B)
Sol. For zero order Reaction Rate low :
$R=k[A]^{\circ} \quad$ Unit of $k=$ mole/liter

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in
\square blog.resonance. ac.in
50. At $27^{\circ} \mathrm{C}$ temperature, time required for 75% completion of a first order reaction is 20 seconds. What will be its rate constant?
(A) $0.693 \mathrm{sec}^{-1} \mathrm{~mole}^{-1} \mathrm{It}$
(B) $0.0693 \mathrm{sec}^{-1}$
(C) $0.693 \mathrm{sec}^{-1}$
(D) $0.0693 \mathrm{sec}^{-1} \mathrm{~mole}^{-1} \mathrm{It}$

Ans. (B)
Sol. For ${ }^{\text {st }}$ order Reaction :
$\mathrm{K}=\frac{1}{\mathrm{t}} \operatorname{\ell n} \frac{\mathrm{Co}}{\mathrm{Ct}}$ at 75% completion : $\mathrm{Ct}=25 \%$
$K=\frac{2.303}{20} \log \frac{100}{25}: k=0.0697 \mathrm{sec}^{-1}$
51. Which statement is incorrect for a catalyst?
(A) It does not affect the equilibrium constant
(B) It increases the proportion of products in less time
(C) It decreases the activation energy of a reaction
(D) It increases the free energy change for the reaction

Ans. (D)
Sol. Catalyst not change the free energy change for the reaction.
52. During electrophoresis of colloidal sol of $\mathrm{Fe}(\mathrm{OH})_{3}$, the colloidal particles-
(A) Move towards anode and cathode both
(B) Move towards cathode
(C) Move towards anode
(D) Do not move

Ans. (B)
Sol. $\mathrm{Fe}(\mathrm{OH})_{3}$ is a type of positive sol. So Partical moves towards cathode during electrophoresis.
53. In manufacturing of sulphuric acid in presence of platinum catalyst, which metal impurity acts as catalytic poison?
(A) Fe
(B) Cr
(C) Cu
(D) V

Ans. (B)
Sol. Reactive metal (impurity) can behave as a negative catalyst.
54. Which ion has the least value of theoretical magnetic moment?
(A) Cr^{3+}
(B) Co^{3+}
(C) T^{3+}
(D) V^{3+}

Ans. (C)
Sol. Magnetic moment $\mu=\sqrt{n(n+2)} B M$
$C r^{+3}=|A r|, 3 d^{3}$ number of unpaired $\mathrm{e}^{-}=3$
$C r^{+3}=|A r|, 3 d^{6}$ number of unpaired $e^{-}=4$
$\mathrm{Ti}^{+3}=|\mathrm{Ar}|, 3 \mathrm{~d}^{1}$ number of unpaired $\mathrm{e}^{-}=1$
$\mathrm{V}^{+3}=|\mathrm{Ar}|, 3 \mathrm{~d}^{2}$ number of unpaired $\mathrm{e}^{-}=2$
least magnetic moment shows by Ti^{+3}

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in
55. Which of the following mixture can form an alloy?
(A) $\mathrm{Fe}, \mathrm{Ni}, \mathrm{Cr}$
(B) $\mathrm{Cr}, \mathrm{Co}, \mathrm{Na}$
(C) $\mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg}$
(D) $\mathrm{Ni}, \mathrm{Mg}, \mathrm{Na}$

Ans. (A)
Sol. $\mathrm{Fe}, \mathrm{Ni}, \mathrm{Cr}$ are transition metals can form an alloy.
56. Which of the following statements is incorrect?
(A) $\mathrm{K}_{4}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ and $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ both have same magnetic moment
(B) $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ is diamagnetic while $\mathrm{K}_{2}\left[\mathrm{NiCl}_{4}\right]$ is paramagnetic.
(C) $\mathrm{K}_{4}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ is square planar while $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ is tetrahedral
(D) $\mathrm{K}_{2}\left[\mathrm{NiCl}_{4}\right]$ and $\mathrm{K}_{4}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ both have same geometrical shapes

Ans. (C)
Sol. $\quad \mathrm{K}_{4}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] \quad \Rightarrow \quad \mathrm{Ni}^{\circ}=3 \mathrm{~d}^{8} 4 \mathrm{~s}^{2} \mathrm{Cr} \rightarrow 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{\circ}$
Hyb. $=\mathrm{Sp}^{3}$ tetrahedral "DM" (Diamagnetic)
$\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] \quad \Rightarrow \quad \mathrm{Ni}^{+2}=3 \mathrm{~d}^{8} 4 \mathrm{~s}^{\circ} \rightarrow 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{\circ}$

Hyb $=\mathrm{dsp}^{2}$ squate plannar \quad "DM" (Diamagnetic)
57. The aqueous solution of which of the following complex has the least conductivity under identical conditions.
(A) Penta aqua chlorido chromium (III) chloride
(B) Tetra aqua dichlorido chromium (III) chloride
(C) Hexa aqua chromium (III) chloride
(D) Tri aqua trichlorido chromium (III)

Ans. (D)
Sol. Compound ions
(A) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}^{2} \mathrm{Cl}_{2} \quad 3\right.$
(B) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \quad 2$
(C) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3} 4$
(D) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] 0$

Conductivity order : (D) $<$ (B) $<(\mathrm{A})<$ (C)
58. Which complex possess facial isomer?
(A) $\mathrm{K}\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]$
(B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$
(C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{CO}_{3}\right] \mathrm{Cl}$
(D) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{SO}_{4}\right.$

Ans. (B)

Sol.
fac-
mer-
The facial(fac) and meridional(mer) isomers of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$. ($\mathrm{M} \mathrm{a} \mathrm{a}_{3} \mathrm{~b}_{3}$ type $)$
59. Which of the following is not a final product obtained by cross aldol condensation of ethanal and propanal?
(A) 3-Methyl-but-2-enal
(B) 2-Methyl-pent-2-enal
(C) But-2-enal
(D) Pent-2-enal

Ans. (A)

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029

To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in
\square

Sol.

The possible cross aldol products includes B, C and D but not A
60. Which is the main functional group in Acrolein?
(A) Aldehyde
(B) Alkene
(C) Nitrile
(D) Ester

Ans. (C)
Sol. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{N}$ Acrolein
61. Which of the following compound upon oxidation gives isophthalic acid?
(A) p-Xylene
(B) m-Xylene
(C) o-Xylene
(D) m-Cresol

Ans. (B)

Sol.

 (Isophthalic acid)
62. Which is the oxidized product obtained when benzene diazonium chloride reacts with phosphonic acid in presence of water?
(A) Chloro benzene
(B) Phenol
(C) Benzene
(D) Phosphorus acid

Ans. (C)

Sol.

63. Which of the following compound is the most basic?
(A)

(B)

(C)

(D)

Ans. (B)

Sol.

+M of $-\mathrm{O}-\mathrm{CH}_{3}$ group increase the basicity.

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in
E blog.resonance. ac.in
64. The number of σ and π bonds in orange azo dye is \qquad and \qquad respectively
(A) 27 and 7
(B) 24 and 7
(C) 26 and 7
(D) 26 and 6

Ans. (C)

Sol.

26σ and 7π.
65. Which one is a purine base?
(A) Uracil
(B) Thymine
(C) Cytosine
(D) Guanine

Ans. (D)

Sol.

66. Which of the following amino acid has pH greater than 7 ?
(A) Glutamic acid
(B) Lysine
(C) Glycine
(D) Alanine

Ans. (B)
Sol. Lysine is example of basic amino acids :

67. Which is the correct structural formula for terylene?
(A)

(B)

(C)

(D)

Ans. (C)
Sol. Terylene is known as poly (Ethylene terphthalate)

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in
\square
68. Which are the monomers of Buna-N?
(A) Buta-1, 3-diene and prop-1-ene-1-nitrile
(B) Buta-1, 2-diene and acrylonitrile
(C) Buta-1, 3-diene and prop-2-ene-1-nitrile
(D) Buta-1, 2-diene and prop-2-ene-1-nitrile

Ans. (C)
Sol.

Buna-N is a polymer of Buta-1,3-diene and Acrylonitrile.
69. Choose the correct option for the suitable match between Column I and Column II

Column-I
(P) Artificial Sweetner
(Q) Food Preservative
(R) Anti Oxidants
(S) Food colours

Column-II
(L) Caramel
(M) Ascorbic acid
(N) Alitame
(O) Sorbic acid
(A) $\mathrm{P} \rightarrow \mathrm{N}, \mathrm{Q} \rightarrow \mathrm{O}, \mathrm{R} \rightarrow \mathrm{L}, \mathrm{S} \rightarrow \mathrm{M}$
(B) $\mathrm{P} \rightarrow \mathrm{N}, \mathrm{Q} \rightarrow \mathrm{M}, \mathrm{R} \rightarrow \mathrm{O}, \mathrm{S} \rightarrow \mathrm{L}$
(C) $\mathrm{P} \rightarrow \mathrm{N}, \mathrm{Q} \rightarrow \mathrm{O}, \mathrm{R} \rightarrow \mathrm{M}, \mathrm{S} \rightarrow \mathrm{L}$
(D) $\mathrm{P} \rightarrow \mathrm{L}, \mathrm{Q} \rightarrow \mathrm{O}, \mathrm{R} \rightarrow \mathrm{M}, \mathrm{S} \rightarrow \mathrm{N}$

Ans. (C)
Sol. (P)
Artificial Sweetner
(N) Alitame
(Q) Food Preservative
(O) Sorbic acid
(R) Anti Oxidants
(M) Ascorbic acid
(S)

Food colours
(L) Caramel
70. Which of the following drugs gives relief from anxiety and stress?
(A) Ofloxacin
(B) Aspirin
(C) Luminal
(D) Mestranol

Ans. (C)
Sol. Luminal is a trade name for Antianxiety and antistress drug.
71. If the edge of a body centred unit cell is 400 pm , what will be the approximate radius of the atom present in it? (in pm)
(A) 200
(B) 141
(C) 173
(D) 924

Ans. (C)
Sol. For $B C C$: $\sqrt{3} a=4 R$
$R=\frac{\sqrt{3} a}{4}=\frac{\sqrt{3} \times 400}{4}=173 \mathrm{Pm}$
72. Which of the following is Ferromagnetic?
(A) O_{2}
(B) CrO_{2}
(C) MnO
(D) $\mathrm{Fe}_{3} \mathrm{O}_{4}$

Ans. (B)
Sol. Ferromagnetic substance : CrO_{2}
73. What is the normality of aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ having $\mathrm{pH}=1$.
(A) 1 N
(B) 0.05 N
(C) 0.1 N
(D) 0.5 N

Ans. (C)

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

Sol. $\quad \mathrm{PH}=1\left[\mathrm{H}^{+}\right]=10^{-1} \mathrm{M}$
N of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.1 \mathrm{~N}$
74. Which of the following mixture is non-ideal solution?
(A) Chloroform and acetone
(B) Benzene and toluene
(C) Chlorobenzene and bromobenzene
(D) Bromoethane and chloroethane

Ans. (A)
Sol. $\mathrm{CHCl}_{3}+\mathrm{CH}_{3} \mathrm{COCH}_{3}$ is non - ideal solution mixture.
[Show (-)ve deviation)
75. Which solution is isotonic with 6% WN aqueous solution of urea? [Mole mass of Urea $=60 \mathrm{gm} . \mathrm{mol}^{-1}$]
(A) 0.25 M NaCl
(B) 0.5 M NaCl
(C) 0.1 M NaCl
(D) 1 M NaCl

Ans. (B)
Sol. For isotonic soln
$\pi_{1}=\pi_{2}$
$\mathrm{i}_{1} \mathrm{C}_{1}=\mathrm{i}_{2} \mathrm{C}_{2}$
$1\left[\frac{6 \times 1000}{60 \times 100}\right]=2[\mathrm{M}]$
$=\mathrm{M}=0.5$
$=0.5 \mathrm{M} \mathrm{NaC} \ell$.
76. In which metal container, the aqueous solution of CuSO_{4} can be stored?
$\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{0}=0.34 \mathrm{~V}$

$\mathrm{E}_{{\mathrm{Ni} / \mathrm{Ni}^{2+}}_{\circ}^{\circ}=0.25 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}=0.80 \mathrm{~V} \text {. }{ }^{\circ} \mathrm{B}}$
(A) Ag
(B) Ni
(C) Fe
(D) Al

Ans. (A)
Sol. $\quad \mathrm{SRP}$ value of $\mathrm{Ag}^{+} / \mathrm{Ag}>\mathrm{SRP}$ Of $\mathrm{Cu}^{+2} / \mathrm{Cu}$
So CuSO_{4} can store in Ag container.
77. For how much time, 10 ampere electric current should be passed through a dilute aqueous NiSO_{4} solution during electrolysis using inert electrode, in order to get 5.85 gm Nickel?
[At. mass of $\mathrm{Ni}=58.5 \mathrm{gm}$]
(A) 965 sec .
(B) 3860 sec .
(C) 1930 sec .
(D) 9650 sec .

Ans. (C)
Sol. w = zit
$5.85=\frac{58.5}{2 \times 96500} \times 10 \times t$
$\mathrm{t}=1930 \mathrm{sec}$

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in
Toll
78. What will be the oxidation potential for the following hydrogen half cell at 1 bar pressure and $25^{\circ} \mathrm{C}$ temperature?

$$
\mathrm{Pt}\left|\underset{\text { 1bar }}{\mathrm{H}_{2(\mathrm{~g})}}\right| \mathrm{HCl}_{(\mathrm{aq})} \mathrm{pH}=3
$$

(A) 0.059 V
(B) 0.188 V
(C) 0.177 V
(D) 0.000 V

Ans. (C)
Sol. For oxidation
$\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-}$
$\mathrm{P}=1 \mathrm{~atm}$
$E_{O P}=E_{O P}^{\circ} \frac{-0.059}{1} \log \left[H^{+}\right]$
$\mathrm{E}_{\text {op }}=0+0.059 \mathrm{pH}$
$=0.059 \times 3=0.177 \mathrm{~V}$
79. Which ore does not contain carbonate?
(A) Calamine
(B) Ciderite
(C) Malachite
(D) Zincite

Ans. (D)
Sol. \quad Zincite $=\mathrm{ZnO}$
80. Which is the correct order of metallurgy for the extraction of copper metal?
(A) Concentration \rightarrow smelting \rightarrow bessimerisation \rightarrow roasting
(B) Concentration \rightarrow smelting \rightarrow roasting \rightarrow bessimerisation
(C) Concentration \rightarrow roasting \rightarrow smelting \rightarrow bessimerisation
(D) Concentration \rightarrow roasting \rightarrow bessimerisation \rightarrow smelting

Ans. (C)
Sol. Order of metallurgy for extraction of Cu metal from copper pyrites $\left(\mathrm{CuFeS}_{2}\right)$ is (C) :
Concentration \rightarrow roasting \rightarrow Smelting \rightarrow Bessimerisation

Resonance Eduventures Limited

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Tel.No.: 0744-6607777, 3012100, 3012222, 6635555 | Fax: +91-022-39167222 | CIN: U80302RJ2007PLC024029
To Know more: sms RESO at 56677 | contact@resonance.ac.in | www.resonance.ac.in

CONNECT
 WITH YOUR SUCCESS THROUGH RESONANCE

JEE (ADV.) 2017 ALL INDIA RANKS IN TOP 100 FROM CLASSROOM PROGRAM

ADMISSIONS OPEN

Classes: V to XII \& XII+
 Target: JEE (Main+Advanced)
 JEE (Main) | AIIMS/ NEET
 Pre-foundation | Commerce \& CLAT

Total No. of Selections

NEET 2017
2975
Classroom: $\mathbf{1 7 2 4}$ | DLP + eLP: 1251

JEE (Main) 2017
24519
Classroom: $\mathbf{1 7 8 0 0}$ | DLP + eLP: 6719

ResoNET Dates

$6^{\text {th }} \& 13^{\text {th }}$ May 2018
 Test Timings: 9 AM to 12 Noon

Educating for better tomorrow

Registered \& Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 Tel. No.: 0744-6607777, 6635555 | CIN: U80302RJ2007PLC024029

To know more: sms RESO at 56677 | website: www.resonance.ac.in | e-mail: contact@resonance.ac.in
Toll Free: 18002585555 fffacebook.com/ResonanceEdu \triangle twitter.com/ResonanceEdu 营 www.youtube.com/resowatch blog.resonance.ac.in

