

Admissions Open for 2016-17

For Classes: VI to XII \& XII+ through
Resonance National Entrance Test (ResoNET)
TARGET: $\left\{\begin{array}{l}\text { © JEE (MAIN + ADVANCED) } \\ \text { () JEE (MAIN) © AIIMS/ AIPMT } \\ \text { () BOARD/ IJSO/ OLYMPIADS/ NTSE/ KVPY }\end{array}\right.$

Cost of Admission Packet (Including Taxes)
JEE (Main+Advanced) Courses: ₹ 1000/-
JEE (Main) \& AlIMS/ AIPMT Courses: ₹ 500/- | BOARD/ IJSO/ NTSE: ₹ 300/-

How to obtain the Admission Packet

(a) Online: Visit www.resonance.ac.in, and buy ONLINE by paying through Credit/Debit Card \& Net Banking. (b) In Person: Through Cash/DD made in favour of 'Resonance Eduventures Ltd.', payable at Kota submit at any of the Resonance Study Centres. | (c) By Post/ Courier: Make a DD/Pay Order of required amount in favour of 'Resonance Eduventures Ltd.', payable at Kota and send it to Kota only. | (d) COD (sms RESO Your City Name to 56677).

Test Cities for ResoNET - 2016

Test Dates: 20.03.2016, 08.05.2016, 19.06.2016 \& 26.06.2016
Resonance Study Centres (29) [State: City]: Rajasthan: Kota, Ajmer, Jaipur, Jodhpur, Sikar, Udaipur; Bihar: Patna; Chattisgarh: Raipur; Delhi; Gujarat: Ahmedabad, Surat, Rajkot, Vadodara; Jharkhand: Ranchi; Madhya Pradesh: Bhopal, Gwalior, Indore, Jabalpur; Maharashtra: Aurangabad, Mumbai, Nagpur, Nanded, Nashik, Chandrapur; Ddisha: Bhubaneswar; Uttar Pradesh: Agra, Allahabad, Lucknow; West Bengal: Kolkata;

Test Dates: 10.04.2016, 15.05.2016 \& 05.06.2016
Resonance Study Centres (29) [State: Cityl: Rajasthan: Kota, Ajmer, Jaipur, Jodhpur, Sikar, Udaipur; Bihar: Patna; Chattisgarh: Raipur; Delhi; Gujarat: Ahmedabad, Surat, Rajkot, Vadodara; Jharkhand: Ranchi; Madhya Pradesh: Bhopal, Gwalior, Indore, Jabalpur; Maharashtra: Aurangabad, Mumbai, Nagpur, Nanded, Nashik, Chandrapur; Odisha: Bhubaneswar; Uttar Pradesh: Agra, Allahabad, Lucknow; West Bengal: Kolkata;
Other Test Cities (33) [State: City]: Rajasthan: Sri Ganganagar, Bihar: Sitamarhi, Begusarai,Bhagalpur, Siwan, Gaya; Delhi NCR: Gurgaon, Faridabad, Noida, Ghaziabad; Haryana: Bhiwani, Hisar, Kaithal; Jharkhand: Jamshedpur, Dhanbad; J\&K : Jammu; Madhya Pradesh: Sagar; Maharashtra: Pune; North East: Guwahati; Odisha: Rourkela; Punjab: Chandigarh, Jalandhar, Patiala, Ludhiana; Uttarkhand: Dehradun; Uttar Pradesh: Kanpur, Bareilly, Gorakhpur, Mathura, Meerut, Muzaffarnagar, Jhansi, Varanasi

Highest selections in JEE (Adv) 2015 in India from any single institute of Kota

Resonance Eduventures Limited
CORPORATE OFFICE (New Campus): CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005
Reg. Office: J-2, Jawahar Nagar Main Road, Kota (Raj.) - 05 | Tel. No.: 0744-3192222, 3012222, 6635555 | Fax : 022-39167222 | CIN: U80302RJ2007PLCO24029
1.

Given : $A B$ is diameter

$$
\angle \mathrm{CAB}=30^{\circ}
$$

To find $\angle \mathrm{PCA}$
construction : Join OC
sol : \therefore In $\triangle \mathrm{AOC}$
as $A O=O C$
$\therefore \angle \mathrm{OAC}=\angle \mathrm{OCA}=30^{\circ}$
$\angle \mathrm{OCP}=90^{\circ}$ [Radius make an angle of 90° with tangent at point of contact]
$\therefore \angle \mathrm{PCA}+\angle \mathrm{OCA}=90^{\circ}$
$\therefore \angle \mathrm{PCA}+30^{\circ}=90^{\circ}$
$\therefore \angle \mathrm{PCA}=60^{\circ}$
2. $k+9,2 k-1$ and $2 k+7$ are in A.P.
$\therefore a_{2}-a_{1}=a_{3}-a_{2}$
$2 k-1-k-9=2 k+7-2 k+1$
$k-10=8$
$k=18$
3. $\ln \triangle \mathrm{ABC}$
$\cos 60^{\circ}=\frac{B C}{A C}$
$\frac{1}{2}=\frac{2.5}{A C}$
$A C=2.5 \times 2$
[where $\mathrm{a}_{1}, \mathrm{a}_{2}$ and a_{3} are the $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ term of the A.P.]
$A C=5 \mathrm{~m}$
\therefore length of the ladder is 5 m
4. We have to draw a card from 52 playing cards so the total event of drawing a card is $=52$ and the event of getting red card and queen is $=26+2=28$
Acc to question
The probability of getting
neither red card nor a queen

$$
\begin{aligned}
& =P(\bar{A})=1-P(A) \\
& =P(\bar{A})=1-\frac{28}{52}=\frac{6}{13}
\end{aligned}
$$

5. Let $-5, \alpha$ be the roots of $2 x^{2}+p x-15=0$
so sum of roots $=-5+\alpha=-\frac{P}{2}$
and product of roots $=-5 \times \alpha=\frac{-15}{2}$
$\therefore \alpha=\frac{3}{2}$
If $\alpha=3 / 2$ then
$\mathrm{P}=7$
and $P\left(x^{2}+x\right)+k=0$ have equal roots
so $D=0$
$\Rightarrow P^{2}-4 P k=0$
$\Rightarrow P(P-4 k)=0$
$P=0 \& P-4 k=0$
so $4 k=p$
$k=\frac{P}{4}=\frac{7}{4}$

6． $\mathrm{x}_{1}=\frac{(2 \mathrm{x}-7)+(1 \times 2)}{2+1}$
$x_{1}=\frac{-14+2}{3}=\frac{-12}{3}=-4$
$y_{1}=\frac{(2 \times 4)+(1 \times-2)}{2+1}=\frac{8-2}{3}=\frac{6}{3}=2$
$(\mathrm{x}, \mathrm{y})=(-4,2)$ coordinates of Q ．
coordinates of point $\mathrm{P}\left(\mathrm{x}_{2} \mathrm{y}_{2}\right)$
\Rightarrow mid of $A Q$ is P
So $\mathrm{X}_{2}=\frac{2+(-4)}{2}=\frac{-2}{2}=-1$
$y_{2}=\frac{-2+2}{2}=0, y=0$
7.

As we know that tangent from same external points are equal
$\therefore \mathrm{SD}=\mathrm{DR}$
$C Q=C R$
$Q B=B P$
$A S=A P$
Adding equation（1），（2），（3）\＆（4）
$S D+C Q+Q B+A S=D R+C R+B P+A P$
$A D+B C=A B+D C$ Hence proved

8．To proove ：$\triangle \mathrm{ABC}$ is a triangle isosceles triangle
Proof ： $\mathrm{AB}=\sqrt{(3-6)^{2}+(0+4)^{2}} \quad$（By using distance formula）
$\mathrm{AB}=\sqrt{9+16}=\sqrt{25}=5$
$\therefore \mathrm{AB}=5$
$A C=\sqrt{(3+1)^{2}+(0-3)^{2}}=\sqrt{16+9}=\sqrt{25}=5$
$\therefore \mathrm{AC}=5$
$B C=\sqrt{(6+1)^{2}+(4-3)^{2}}=\sqrt{49+1}=\sqrt{50}$
$\therefore \mathrm { BC } = 5 \longdiv { 2 }$
Now as AB＝AC
$\therefore \triangle A B C$ is isosceles and $(A B)^{2}+(A C)^{2}=(B C)^{2}$
\therefore By converse of pythagoras theorem $\triangle \mathrm{ABC}$ is a right angle isosceles triangle．
9．Let the first term and common difference of the A．P．be a and d respectively．
Then， $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$a_{4}=a+(4-1) d=0$
$a_{4}=a+3 d=0$
$a+3 d=0$
$\therefore \mathrm{a}=-3 \mathrm{~d}$
$a_{25}=a+(25-1) d$
$a_{25}=a+24 d$
By equation
$\mathrm{a}_{25}=-3 \mathrm{~d}+24 \mathrm{~d}$
$\mathrm{a}_{25}=21 \mathrm{~d}$
$a_{11}=a+(11-1) d$
$a_{11}=a+10 d$
By equation
$a_{11}=-3 d+10 d$
$\therefore \mathrm{a}_{11}=7 \mathrm{~d}$
multiply both sides by 3
$3 a_{11}=21 d$
$\therefore 3 a_{11}=a_{25}$ Hence proved
10. $\ln \triangle O T P$
$\mathrm{OT}=\mathrm{r}, \mathrm{OP}=2 \mathrm{r}$ [Given]
$\angle \mathrm{OTP}=90^{\circ}$ [radius is perpendicular to tangent at the pair of contact]
Let $\angle \mathrm{TPO}=\theta$
$\therefore \sin \theta=\frac{\mathrm{OT}}{\mathrm{OP}}=\frac{\mathrm{r}}{2 \mathrm{r}}=\frac{1}{2}$
$\therefore \theta=30^{\circ}$
$\therefore \ln \triangle \mathrm{TOP} \angle \mathrm{TOP}=60^{\circ}$ [By angle sum property]
$\angle \mathrm{TOP}=\angle \mathrm{SOP}$ [As Δ 's are congruent]

$\therefore \angle \mathrm{SOP}$ is also 60°
$\therefore \angle \mathrm{TOS}=120^{\circ} \mathrm{In} \triangle \mathrm{OTS}$ as $\mathrm{OT}=\mathrm{OS} \therefore[\angle \mathrm{OST}=\angle \mathrm{OTS}]$
$\angle \mathrm{OTS}+\angle \mathrm{OST}+\angle \mathrm{SOT}=180 \Rightarrow 2 \angle \mathrm{OST}+120=180^{\circ}$
$\therefore \angle \mathrm{OTS}+\angle \mathrm{OST}=30^{\circ}$
11. $\quad A B^{2}=B C^{2}+A C^{2}$
$\Rightarrow 169=\mathrm{BC}^{2}+144$
$25=B^{2}$
$B C=5$
Area of shaded region $=$ Area of semicircle

- Area of $\triangle A B C$
$=\frac{\pi r^{2}}{2}-\frac{1}{2} \times B C \times A C$
$=\frac{1}{2}\left[3.14 \times \frac{13}{2} \times \frac{13}{2}\right]-(5 \times 12)$
$=\frac{1}{2}(132.665-60)$
$=36.3325 \mathrm{~cm}^{2}$

12. Total CSA of tent
$=2 \pi \mathrm{rh}+\pi \mathrm{rl}$
$=\frac{22}{7}\left[\left(2 \times \frac{3}{2} \times 2.1\right)+\left(\frac{3}{2} \times 1.4\right)\right]$
$\Rightarrow \frac{22}{7} \times 10.5=33 \mathrm{~m}^{2}$
Total CSA oftent $=33 \mathrm{~m}^{2}$
$1 \mathrm{~m}^{2}$ cost \rightarrow Rs. 500
$33 \mathrm{~m}^{2}$ cost \rightarrow Rs. $500 \times 33=16500$ Rs
So total cost of canvas needed to make the text is Rs 16500

13. Given : Coordinates of
$P(x, y)$
$A(a+b, b-a)$
$B(a-b, a+b)$
To prove = bx = ay
According to question
$\mathrm{PA}=\mathrm{PB}$
$(P A)^{2}=(P B)^{2}$

so accoding to distance formula
$[x-(a+b)]^{2}+[y-(b-a)]^{2}=\left[(x-(a-b)]^{2}+[y-(a+b)]^{2}\right.$
$(a+b)^{2}-2(a+b) x+(b-a)^{2}-2(b-a) y=(a-b)^{2}-2(a-b) x+(a+b)^{2}-2(a+b) y$
$2[(a+b) x+(b-a) y]=2[(a-b) x+(a+b) y]$
$(a+b) x+(b-a) y=(a-b) x+(a+b) y$
$(a+b) x-(a-b) x=(a+b) y-(b-a) y$
$(a+b-a+b) x=(a+b-b+a) y$
$2 b x=2 a y$
$b x=a y$ hence prove

Shaded area = Area of larger major sector - area of smaller major sector
$=\pi(14)^{2} \times \frac{40}{360}-\pi(7)^{2}\left(\frac{40}{360}\right)$
$=\pi \times \frac{40}{360}\left(14^{2}-7^{2}\right)$
$=\frac{22}{7} \times \frac{1}{9}(147)=51.3 \mathrm{~cm}^{2}$
15. $\frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}=\frac{7 n+1}{4 n+27}$
$\frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{7 n+1}{4 n+27}$
$\frac{a_{1}+\frac{(n-1)}{2} d_{1}}{a_{2}+\frac{(n-1)}{2} d_{2}}=\frac{7 n+1}{4 n+27}$
Put $\frac{n-1}{2}=m-1$
$n-1=2 m-2$
$n=2 m-2+1$
$=2 m-1$
$\frac{a_{1}+(m-1) d_{1}}{a_{2}+(m-1) d_{2}}=\frac{7(2 m-1)+1}{4(2 m-1)+27}$
$=\frac{14 m-7+1}{8 m-4+27}=\frac{14 m-6}{8 m+23}$
16. Let $\mathrm{x}-2=\mathrm{t}$

$$
\begin{aligned}
& \frac{1}{t(t+1)}+\frac{1}{t(t-1)}=\frac{2}{3} \\
& =\frac{t-1+t+1}{t(t+1)(t-1)}=\frac{2}{3} \\
& 3 t=t(t+1)(t-1) \\
& 3 t=t\left(t^{2}-1\right) \\
& 3 t=t^{3}-t \\
& t^{3}-4 t=0 \\
& t\left(t^{2}-4\right)=0 \\
& t=0 \quad t^{2}-4=0 \\
& t= \pm \sqrt{4} \\
& t= \pm 2 \\
& x-2=0 \quad \& x-2= \pm 2 \\
& x=2 \quad x=0,4
\end{aligned}
$$

17. Volume of cone $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times 5 \times 5 \times 24$
Volume of cone $=$ volume of cylinder
$\frac{1}{3} \times \frac{22}{7} \times 5 \times 5 \times 24=\frac{22}{7} \times 10 \times 10 \times h$
$\mathrm{h}=2 \mathrm{~cm}$
18. The rise in the level of water will be due to the volume of sphere

$$
\begin{aligned}
& \therefore \frac{4}{3} \pi(6)^{3}=\pi \mathrm{x}^{2} \times 3 \frac{5}{9} \\
& \frac{4}{3} \times 6 \times 6 \times 6=\mathrm{x}^{2} \times \frac{32}{9} \\
& \mathrm{x}=9
\end{aligned}
$$

$$
\therefore \text { diameter }=2 x=18 \mathrm{~cm}
$$

19. Let x be distance of cliff from man and $h+10$ be height of hill which is required. In right triangle ACB,

$\Rightarrow \tan 60^{\circ}=\frac{A C}{B C}=\frac{h}{x}$
$\Rightarrow \quad \sqrt{3}=\frac{h}{x}$
$\Rightarrow \mathrm{x}=\frac{\mathrm{h}}{\sqrt{3}}$
In right triangle BCD ,

$$
\begin{align*}
& \tan 30^{\circ}=\frac{C D}{B C}=\frac{10}{x} \\
\Rightarrow & x=10 \sqrt{3} \tag{ii}
\end{align*}
$$

$$
\Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{10}{x}
$$

From (i) \& (ii)

$$
\begin{aligned}
& \frac{\mathrm{h}}{\sqrt{3}}=10 \sqrt{3} \\
\Rightarrow \quad & \mathrm{~h}=30 \mathrm{~m}
\end{aligned}
$$

\therefore Height of cliff $=h+10=30+10=40 \mathrm{~m}$.
Distance of ship from cliff $=x=10 \sqrt{3} \mathrm{~m}$

$$
=10(1.732)=17.32 \mathrm{~m}
$$

20. Sample space while tossing 3 coins
$\mathrm{S}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$
(i) Favourable cases $=\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
$\mathrm{P}($ exactly 2 heads $)=\frac{\text { Number of favourable outcomes }}{\text { Number of total outcomes }}=\frac{3}{8}$
(ii) Favourable cases $=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
$P($ at least 2 heads $)=\frac{4}{8}=\frac{1}{2}$
(iii) favourable cases $=\{\mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$
$P($ at least 2 tails $)=\frac{4}{8}=\frac{1}{2}$
21.

Given $r=2.8 ; h=3.5 \mathrm{~m}$
(ht. of cone) $h_{1}=2.1 \mathrm{~m}$
$\therefore I=\sqrt{r^{2}+\left(h_{1}\right)^{2}}=3.5 \mathrm{~m}$
Area of convas required per tent
$=[$ CSA of cone + CSA of cylinder $]$
$=\pi \mathrm{rl}+2 \pi \mathrm{rh}$
$=\pi r[3.5+7]$
$=\frac{22}{7} \times \frac{28}{10} \times \frac{105}{10}=\frac{462}{5} \mathrm{~m}^{2}$
cost of canvas per tent $=$ Rs. $\frac{462}{5} \times 120=$ Rs. 11088
Total cost of 1500 tents $=$ Rs. 11088×1500
Amount shared by each schoo;
$=$ Rs. $\frac{11088 \times 1500}{50}=$ Rs. 332640
22.

Given : AP and $A Q$ are two tangents drawn from a point A to a circle $C(O, r)$.
To prove : AP = AQ.
Construction : Join OP, OQ and OA.
Proof : In $\triangle A O Q$ and $\triangle A P O$

$$
\angle O Q A=\angle O P A
$$

[Tangent at any point of a circle is perp. to radius through the point of contact]
$A O=A O$
[Common]
[Radius]

So, by R.H.S. criterion of congruency $\triangle A O Q \cong \triangle A O P$
$\therefore \quad A Q=A P \quad[B y C P C T]$
Hence Proved.
23.

Steps of constructions are as follows
(1) Draw a circle of radius 4 cm
(2) Let O be its centre and P be any external point such that $O P=8 \mathrm{~cm}$
(3) Join OP and then taking OP as diameter draw a circle intersecting the given circle at two points A and B. Join AP and BP.
(4) Hence, $A P$ and $B P$ are the required tangents
24.

\therefore Radius is always perpendicular to tangent, $\therefore \angle \mathrm{ACO}=90^{\circ}$
In $\triangle A D O$ and $\triangle A C O$
$\angle D^{\prime} O^{\prime}=\angle C A O$
[Common]
$\angle \mathrm{ADO}^{\prime}=\angle \mathrm{ACO}$
[each 90°]
\therefore By AA similarity criteria
$\triangle A^{\prime} O^{\prime} \sim \triangle A C O$
$\Rightarrow \frac{\mathrm{DO}^{\prime}}{\mathrm{CO}}=\frac{\mathrm{AO}^{\prime}}{\mathrm{AO}}=\frac{\mathrm{r}}{3 \mathrm{r}}=\frac{1}{3}$
25. We have
$\frac{1}{x+1}+\frac{2}{x+2}=\frac{4}{x+4}$
$\Rightarrow \frac{x+2+2(x+1)}{x^{2}+3 x+2}=\frac{4}{x+4}$
$\Rightarrow(3 x+4)(x+4)=4\left(x^{2}+3 x+2\right)$
$\Rightarrow 3 x^{2}+16 x+16=4 x^{2}+12 x+8$
$\Rightarrow x^{2}-4 x-8=0$
Using quadratic formula
$x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}=\frac{4 \pm \sqrt{16+32}}{2}=\frac{4 \pm 4 \sqrt{3}}{2}$
$x=2+2 \sqrt{3}$ or $2-2 \sqrt{3}$

Educating for better tomorrow
26.

Let PQ be the tower
Let $\mathrm{PQ}=\mathrm{h}$
Clearly
$X Y=P M=40 \mathrm{~m}$
$\mathrm{QM}=(\mathrm{h}-40)$
Let $P X=M Y=x$
In $\triangle M Q Y, \tan 45^{\circ}=\frac{Q M}{M Y} \Rightarrow 1=\frac{h-40}{x}$
$\Rightarrow \mathrm{x}=\mathrm{h}-40$
$\ln \triangle \mathrm{QPX}, \tan 60^{\circ}=\frac{\mathrm{QP}}{\mathrm{PX}} \Rightarrow \sqrt{3}=\frac{\mathrm{h}}{\mathrm{x}}$
$\Rightarrow h=x \sqrt{3}$
From (i) and (ii) we get
$x=x \sqrt{3}-40$
$(\sqrt{3}-1) x=40$
$P X=x=\frac{40}{(\sqrt{3}-1)} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)}=20(\sqrt{3}+1)$
$P Q=h=20(\sqrt{3}+1) \sqrt{3}=20 \sqrt{3}(\sqrt{3}+1)$
27.

```
\(\frac{1,2,3, \ldots \ldots x-1}{S}, \frac{x, x+1, \ldots \ldots \ldots, 49}{S^{\prime}}\)
\(S=1+2+3+\ldots \ldots+(x-1)\)
\(=\left(\frac{x-1}{2}\right)[1+x-1]\)
\(=\left(\frac{x-1}{2}\right)(x)\)
\(S=(x+1)+(x+2)+\ldots .+49\)
\(=\left(\frac{49-x}{2}\right)(x+1+49)\)
\(=\frac{49-x}{2}(x+50)\)
S = S'
\(\left(\frac{x-1}{2}\right) x=\left(\frac{49-x}{2}\right)(x+50)\)
\(x^{2}-x=49 x+49 \times 50-x^{2}-50 x\)
\(2 x^{2}=49 \times 50\)
\(x^{2}=49 \times 25\)
\(\mathrm{x}=35\)
```

Educating for better tomorrow
28. Coordinates of $\mathrm{D}=\frac{2(4)+(1)}{2+1}$

$$
=\frac{8+1}{3}=\frac{9}{3}=3=\frac{2(6)+(1)(5)}{2+1}
$$

Coordinates of $D=\left(3, \frac{17}{3}\right)$
Coordinates of $\mathrm{E}=\frac{2(4)+(1)(7)}{2+1}=\frac{8+7}{3}=\frac{15}{3}=5$
$\frac{2(6)+1(2)}{2+1}=\frac{12+2}{3}=\frac{14}{3}$
area $\Delta(A D E)=\frac{1}{2}\left[4 \frac{17}{3}-\frac{14}{3}+3\left(\frac{14}{3}-6\right)+5\left(6-\frac{17}{3}\right)\right]$
$=\frac{1}{2}\left[4 \times 1+3 \frac{(-4)}{3}+5 \times \frac{1}{3}\right]$
$=\frac{1}{2} \times \frac{5}{3}=\frac{5}{6}$
area $\triangle A B C$
$=\frac{1}{2}[4(5-2)+1(2-6)+7(6-5)]$
$=\frac{1}{2}[4 \times 3+1 \times-4+7 \times 1]$
$=\frac{1}{2}[12-4+7]=\frac{15}{2}$
$\Rightarrow \frac{\text { area } \triangle A B C}{\text { area } \triangle A D E}=\frac{\frac{15}{2}}{\frac{5}{6}}=9$
\therefore area $\triangle \mathrm{ABC}=9$ area ($\triangle \mathrm{ADE}$)
29. Total no. of events 16
$\{1 \times 1,1 \times 4,4 \times 9,1 \times 16$
$2 \times 1,2 \times 4,2 \times 9,2 \times 16$
$3 \times 1,3 \times 4,3 \times 9,3 \times 16$
$4 \times 1,4 \times 4,4 \times 9,4 \times 16\}$
Events when product is less than $16=8$
$\{1 \times 1,1 \times 4,1 \times 9,2 \times 1,2 \times 4,3 \times 1,3 \times 4,4 \times 1\}$
\therefore Probability that sproduct of $\mathrm{x} \& \mathrm{y}$ is less than $16=\frac{\text { events when product is less than } 16}{\text { Total no. of events }}$
$=\frac{8}{16}=\frac{1}{2}$
30.

(i) length of sector $\overparen{C A}=\pi r \frac{\theta}{180}$
ln $\triangle \mathrm{OAB}$
$\tan \theta=\frac{\mathrm{AB}}{\mathrm{OA}}$
$\mathrm{AB}=r \tan \theta$
Now, $\sec \theta=\frac{B O}{r}$ so, $B O=r \sec \theta$
length of $\mathrm{CO}=\mathrm{r}$
So length of $B C=O B-O C$

$$
=r \sec \theta-r
$$

So perimeter $=\overparen{A C}+A B+B C$

$$
\begin{aligned}
& =\pi r \frac{\theta}{180}+r \tan \theta+r \sec \theta-r \\
& =r\left[\tan \theta+\sec \theta+\frac{\pi \theta}{180}-1\right]
\end{aligned}
$$

31. Speed of boat in still water $=24 \mathrm{~km} / \mathrm{hr}$

Let the speed of stream be ' x '
Upstream $=$ Speed of boat $=24-x$
Tupstream $=\frac{\text { Distance }}{\text { speed }}=\frac{32}{24-x}$
Downstream
Speed of boat $=24+x$
$\mathrm{T}_{\text {downstream }}=\frac{\text { distance }}{\text { speed }}=\frac{32}{24+x}$
ATP
$\mathrm{T}_{\text {upstream }}-\mathrm{T}_{\text {downstream }}=1$
$\frac{32}{24-x}-\frac{32}{24+x}=1$
$32\left[\frac{24+x-(24-x)}{(24-x)(24+x)}\right]=1$
$32[24+x-24+x]=(24-x)(24+x)$
$64 x=(24)^{2}-x^{2}$
$x^{2}+64 x-576=0$
$x^{2}+72 x-8 x-576=0$
$x(x+72)-8(x+72)=0$
$(x-8)(x+72)=0$
$x=8,-72$
\therefore speed of stream $=8 \mathrm{~km} / \mathrm{hr}$

