SET-1

Series JBB/5
Code No. 30/5/1
\square
Roll No.

Note:

(I) Please check that this question paper contains 20 printed pages.
(II) Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(III) Please check that this question paper contains 40 questions.
(IV) Please write down the Serial Number of the questions in the answer book before attempting it.
(V) 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

MATHEMATICS (STANDARD) HINTS \& SOLUTIONS

Time allowed : 3 hours

Maximum Marks : 80

General Instructions :

Read the following instructions very carefully and strictly follow them.
(i) This question paper comprises Four Sections - A, B, C and D There are 40 questions in the question paper. All questions are compulsory.
(ii) Section A - Questions no. 1 to 20 comprises of 20 questions of one mark each.
(iii) Section B - Questions no. 21 to $\mathbf{2 6}$ comprises of 6 questions of two mark each.
(iv) Section C - Questions no. 27 to 34 comprises of 8 questions of three mark each.
(v) Section D - Questions no. $\mathbf{3 5}$ to $\mathbf{4 0}$ comprises of $\mathbf{6}$ questions of four mark each.
(vi) There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of one mark, 2 questions of two marks, 3 questions of three marks and 3 questions of four marks. You have to attempt only one of the choices in such questions.
(vii) In addition to this, separate instructions are given with each section and question, wherever necessary.
(viii) Use of calculators is not permitted.

SECTION-A

Question numbers 1 to 20 carry 1 mark each.

Question numbers 1 to 10 are multiple choice questions.

Choose the correct option.

1. On dividing a polynomial $p(x)$ by $x^{2}-4$, quotient and remainder are found to be x and 3 respectively.
The polynomial $p(x)$ is
(A) $3 x^{2}+x-12$
(B) $x^{3}-4 x+3$
(C) $x^{2}+3 x-4$
(D) $x^{3}-4 x-3$

Sol. Let $p(x)$ in divided by $g(x)=x^{2}-4$ and quotient is $q(x)=x$ and remainder is $r(x)=3$
by division Algorithm
Divided $=$ divisor \times quotient + Reminder
$p(x)=g(x) \times q(x)+r(x)$
$p(x)=\left(x^{2}-4\right) \times x+3$
$p(x)=x^{3}-4 x+3$
Option (B)
2. In figure - $1, \mathrm{ABC}$ is an isosceles triangle, right angled at C . Therefore

figure - 1
(A) $A B^{2}=2 A C^{2}$
(B) $B C^{2}=2 A B^{2}$
(C) $A C^{2}=2 A B^{2}$
(D) $A B^{2}=4 A C^{2}$

Sol. Given that $\triangle A B C$ is an isosceles right angled triangle with $A C=B C$
$\therefore \quad A B^{2}=A C^{2}+B C^{2}$
\{by Pythagoras theorem\}
$A B^{2}=A C^{2}+A C^{2}$
\{given AC = BC\}
$A B^{2}=2 A C^{2}$
Option (A)
3. The point on the x-axis which is equidistant from $(-4,0)$ and $(10,0)$ is
(A) $(7,0)$
(B) $(5,0)$
(C) $(0,0)$
(D) $(3,0)$

Sol. Let the point be $P(x, 0)$ which in equidistant from point $A(-4,0) \&$ point $B(10,0)$
$\therefore \quad \mathrm{PA}=\mathrm{PB}$ by distance formula
$\sqrt{(x+4)^{2}+(0-0)^{2}}=\sqrt{(x-10)^{2}+(0-0)^{2}}$
Squaring on the both sides
$(x+4)^{2}=(x-10)^{2}$
$\Rightarrow x^{2}+2 x+16=x^{2}-20 x+100$
$22 x=84$
$x=3$
required point is $(3,0)$
Option (D)

OR

The centre of a circle whose end points of a diameter are $(-6,3)$ and $(6,4)$ is
(A) $(8,-1)$
(B) $(4,7)$
(C) $\left(0, \frac{7}{2}\right)$
(D) $\left(4, \frac{7}{2}\right)$

Sol. Let $A B$ in diameter and O is the centre
We know that
Centre O is the mid point of diameter so

Educating for better tomorrow
$(-6,3)$

By section formula

$$
\begin{aligned}
& x=\frac{6-6}{1+1} \quad y=\frac{4+3}{1+1} \quad\left\{x=\frac{m x_{2}+n x_{1}}{m+n}\right\} y=\left\{y=\frac{m y_{2}+n y_{1}}{m+n}\right\} \\
& x=0 \quad y=\frac{7}{2} \\
& O\left(0, \frac{7}{2}\right)
\end{aligned}
$$

Option（C）
4．The value（s）of k for which the quadratic equation $2 x^{2}+k x+2=0$ has equal roots，is
（A） 4
（B）± 4
（C）-4
（D） 0

Sol．given $2 x^{2}+K x+2=0$ has equal roots
So $D=0 \quad a=2, b=k . C=2$
$b^{2}-4 a c=0$
$\left(k^{2}\right)-4(2)(2)=0$
$k^{2}-16=0$
$k^{2}=16$
$\mathrm{k}= \pm 4$
Option（B）
5．Which of the following is not an A．P．？
（A）$-1.2,0.8,2.8, \ldots \ldots$.
（B） $3,3+\sqrt{2}, 3+2 \sqrt{2}, 3+3 \sqrt{2}$
（C）$\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}, \ldots \ldots$
（D）$\frac{-1}{5}, \frac{-2}{5}, \frac{-3}{5}, \ldots$.

Sol．By checking options，option（C）is not in A．P
$\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3} \ldots$.
$d=a_{2}-a_{1}=\frac{7}{3}-\frac{4}{3}=\frac{3}{3}=1$
$\mathrm{d}=\mathrm{a}_{3}-\mathrm{a}_{2}=\frac{9}{3}-\frac{7}{3}=\frac{2}{3}$
Difference is not same so this is not an A．P．
6．The pair of linear equations $\frac{3 x}{2}+\frac{5 y}{3}=7$ and $9 x+10 y=14$ is
（A）consistent
（B）inconsistent
（C）consistent with one solution
（D）consistent with many solutions．

Sol．$\quad \frac{3 x}{2}+\frac{5 y}{3}-7=0$
$9 x+10 y-14=0$
$\mathrm{a}_{1}=\frac{3}{2} \quad \mathrm{~b}_{1}=\frac{5}{3}$
$\mathrm{a}_{2}=9$
$\mathrm{b}_{2}=10$
$C_{1}=-7$
$c_{2}=-14$
$\frac{a_{1}}{a_{2}}=\frac{\frac{3}{2}}{9}=\frac{1}{6}$

Educating for better tomorrow
$\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\frac{5}{3}}{10}=\frac{1}{6}$
$\frac{c_{1}}{c_{2}}=\frac{-7}{-14}=\frac{1}{2}$
Equation (A), (B) \& (C)
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
So the system is inconsistent
Option (B)
7. In figure $-2, \mathrm{PQ}$ is tangent to the circle with centre at O , at the point B . If $\angle \mathrm{AOB}=100^{\circ}$, then $\angle \mathrm{ABP}$ is equal to

Figure-2
(A) 50°
(B) 40°
(C) 60°
(D) 80°

Sol. In $\triangle \mathrm{AOB}$
$\mathrm{OA}=\mathrm{OB}=$ radius
So $\angle \mathrm{OAB}=\angle \mathrm{OBA}$

Now
$\angle \mathrm{AOB}+\angle \mathrm{OAB}+\angle \mathrm{OBA}=180^{\circ}$
[By ASP]
$100+2 \angle \mathrm{OBA}=180^{\circ}$
[By equation (1)]

$$
2 \angle \mathrm{OBA}=80^{\circ}
$$

$$
\begin{equation*}
\angle \mathrm{OBA}=40 \tag{2}
\end{equation*}
$$

$\Rightarrow \angle \mathrm{OBP}=90^{\circ} \quad[\because$ A tangent to a circle is perpendicular to the radius through the point of contact]

$$
\begin{aligned}
& \angle O B A+\angle A B P=90^{\circ} \\
& 40+\angle A B P=90^{\circ} \\
& \angle A B P=90-40 \\
& \angle A B P=50^{\circ} \quad \text { Option }(A)
\end{aligned}
$$

8. The radius of a sphere (in cm) whose volume is $12 \pi \mathrm{~cm}^{3}$, is
(A) 3
(B) $3 \sqrt{3}$
(C) $3^{\frac{2}{3}}$
(D) $3^{\frac{1}{3}}$

Sol. Let the radius of sphere be rcm given that
Volume of sphere $=12 \pi \mathrm{~cm}^{3}$
$\Rightarrow \quad \frac{4}{3} \pi r^{3}=12 \pi$

Educating for better tomorrow

$$
\begin{aligned}
r^{3} & =9 \\
r^{3} & =3^{2} \\
r & =3^{\frac{2}{3}} \\
\text { Option } & (C)
\end{aligned}
$$

9. The distance between the points $(m,-n)$ and $(-m, n)$ is
(A) $\sqrt{m^{2}+n^{2}}$
(B) $m+n$
(C) $2 \sqrt{\mathrm{~m}^{2}+\mathrm{n}^{2}}$
(D) $\sqrt{2 m^{2}+2 n^{2}}$

Sol. Let point $P\left(m_{1}-n\right)$ and $Q\left(-m_{1} n\right)$

$$
\text { So } \begin{aligned}
\mathrm{PQ} & =\sqrt{(-m-m)^{2}+(n+n)^{2}} \\
\mathrm{PQ} & =\sqrt{(-2 m)^{2}+(2 n)^{2}} \\
& =\sqrt{4 \mathrm{~m}^{2}+4 \mathrm{n}^{2}} \\
\mathrm{PQ} & =2 \sqrt{\mathrm{~m}^{2}+\mathrm{n}^{2}} \quad \text { Option (C) }
\end{aligned}
$$

10. In figure - 3, from an external point P, two tangents $P Q$ and $P R$ are drawn to a circle of radius 4 cm with centre O. If $\angle Q P R=90^{\circ}$, then length of $P Q$ is

Figure-3
(A) 3 cm
(B) 4 cm
(C) 2 cm
(D) $2 \sqrt{2} \mathrm{~cm}$

Sol. In the given figure QP and $P R$ are the tangent so $\angle O Q P$ and $\angle O R P=90$
In quadrilateral
$\angle \mathrm{P}=\angle \mathrm{Q}=\angle \mathrm{R}=90^{\circ}$
By ASP

$$
\begin{aligned}
& \angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}+\angle \mathrm{Q}=360^{\circ} \\
& 90+90+90+\angle \mathrm{O}=360^{\circ} \\
& \angle \mathrm{O}=90^{\circ}
\end{aligned}
$$

All angles of quadrilateral PQR are of 90° so it is rectangle and rectangle OPQR having adjacent sides equal to it is a square

Fill in the blanks in questions numbers 11 to 15.
11. The probability of an event that is sure to happen, is \qquad
Sol. 1
12. Simplest form of $\frac{1+\tan ^{2} A}{1+\cot ^{2} A}$ is \qquad
Sol. $\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}}$

$$
\because \quad \sec ^{2} \theta=1+\tan ^{2} \theta
$$

$$
\because \quad \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta
$$

$$
\Rightarrow \frac{\sec ^{2} \mathrm{~A}}{\operatorname{cosec}^{2} \mathrm{~A}} \quad \because \quad \sec \theta=\frac{1}{\cos \theta}
$$

$$
\Rightarrow \frac{\sin ^{2} A}{\cos ^{2} A} \quad \because \quad \operatorname{cosec} \theta=\frac{1}{\sin \theta}
$$

$$
\Rightarrow \tan ^{2} \mathrm{~A}
$$

$$
\because \quad \frac{\sin \theta}{\cos \theta}=\tan \theta
$$

13. $A O B C$ is a rectangle whose three vertices are $A(0,-3), O(0,0)$ and $B(4,0)$. The length of its diagonals

Sol.
\qquad -.

$A B=5$ units
14. In the formula $\bar{x}=a+\left(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\right) \times h_{i}, u_{i}=$ \qquad -

Sol. $\quad U_{i}=\frac{x_{i}-a}{h}$
15. All concentric circles are \qquad to each other.
Sol. Similar

Answer the following question numbers 16 to 20

16. Find the sum of the first 100 natural numbers.

Sol. First 100 natural numbers one
1, 2, 3, 4 \qquad .99, 100

So this should be can AP

$$
a=1 \quad d=1 \quad \ell=100 \quad n=100
$$

$$
S_{100}=\frac{m}{2}(a+\ell)
$$

$$
S_{100}=\frac{100}{2}(1+100)
$$

$$
S_{100}=5050
$$

17. In figure - 4, the angle of elevation of the top of a tower from a point C on the ground, which is 30 m away from the foot of the tower, is 30°. Find the height of the tower.

Figure-4
Sol. $\tan 30^{\circ}=\frac{A B}{30}$
$\frac{1}{\sqrt{3}}=\frac{A B}{30} \Rightarrow A B=\frac{30}{\sqrt{3}}=10 \sqrt{3} \mathrm{~m}$
Length of lower $=10 \sqrt{3} \mathrm{~m}$
18. The LCM of two numbers is 182 and their HCF is 13 . If one of the numbers is 26 , find the other.

Sol. Let the other number be a.
$\operatorname{LCM}(a, b) \times \operatorname{HCF}(a, b)=a \times b$
$182 \times 13=a \times 26$
$a=\frac{182 \times 13}{26}$
$a=91$
19. Form a quadratic polynomial, the sum and product of whose zeroes are (-3) and 2 respectively.

Sol. Given that sum of zeros (-3) and product of zeros is 2.
Quadratic polynomial
$P(x)=k\left[x^{2}-(\right.$ Sum of zeros) $x+$ Product of zeros $]$
$P(x)=k\left[x^{2}-(-3) x+2\right]$
$P(x)=k\left[x^{2}+3 x+2\right]$

```
OR
```

Can $\left(x^{2}-1\right)$ be a remainder while dividing $x^{4}-3 x^{2}+5 x-9$ by $\left(x^{2}+3\right) ?$
Sol.

$$
\begin{gathered}
x^{2}+3 \sqrt{x^{4}-3 x^{2}+5 x-9} x^{2}-6 \\
x^{4}+3 x^{2} \\
\begin{array}{c}
-6 x^{2}+5 x-9 \\
-6 x^{2} \quad-18 \\
+\quad 5 x+9
\end{array}
\end{gathered}
$$

No, $x^{2}-1$ in not the remainder when divided by $x^{2}+3$.
20. Evaluate : $\frac{2 \tan 45^{\circ} \times \cos 60^{\circ}}{\sin 30^{\circ}}$

Sol. $\frac{2 \tan 45^{\circ} \times \cos 60^{\circ}}{\sin 30^{\circ}}$

$$
\left\{\begin{array}{r}
\because \tan 45^{\circ}=1 \\
\cos 60^{\circ}=\frac{1}{2} \\
\sin 30^{\circ}=\frac{1}{2}
\end{array}\right\}
$$

SECTION-B

Question numbers 20 to 26 carry 2 marks each.

21. In the figure - $5, D E \| A C$ and $D F \| A E$.

Prove that $\frac{B F}{F E}=\frac{B E}{E C}$

Figure-5
Sol.

In $\triangle B E A$
DF||AE
By BPT $\frac{\mathrm{BF}}{\mathrm{FE}}=\frac{\mathrm{BD}}{\mathrm{AD}}$
In $\triangle A B C$
DE \| AC
By BPT $\frac{\mathrm{BE}}{\mathrm{EC}}=\frac{\mathrm{BD}}{\mathrm{AD}}$
From (1) and (2)
$\frac{B F}{F E}=\frac{B E}{E C}$ Hence proved.
22. Show that $5+2 \sqrt{7}$ is an irrational number, where $\sqrt{7}$ is given to be an irrational number.

Sol. Let $5+2 \sqrt{7}$ is a rational number
$\therefore 5+2 \sqrt{7}=\frac{P}{q}$ Where P, q are

$$
\text { integer , } q \neq 0
$$

$$
2 \sqrt{7}=\frac{P}{q}-5
$$

$$
\sqrt{7}=\frac{1}{2}\left[\frac{P}{q}-5\right]
$$

IN LHS we have $\sqrt{7}$ which is an irrational number and in RHS we have rational number. And we know a rational number is not equal to irrational number.
\therefore LHS \neq RHS
So our assumption is not correct
$\therefore 5+2 \sqrt{7}$ is irrational number

Check whether 12^{n} can end with the digit 0 for any natural number n.
Sol. $\quad 12^{n}=\left(2^{2} \times 3\right)^{n}$
$=2^{2 n} \times 3^{n}$
$=(2 \times 2 \times 2 \times$ \qquad up to 2 n times) $(3 \times 3 \times$ up to n times)
to get zero at unit place we required a pair of $2 \& 5$. but here we not get a pair of 2×5
So it never ends with digit 0 .
23. If A, B and C are interior angles of a $\triangle A B C$, then show that $\cos \left(\frac{B+C}{2}\right)=\sin \left(\frac{A}{2}\right)$.

Sol. m.d

$$
\mathrm{LHS}: \cos \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right)
$$

$$
=\cos \left(\frac{180-\mathrm{A}}{2}\right)
$$

$$
=\left\{\begin{array}{c}
\ln \triangle A B C \\
\angle A+\angle B+\angle C=180 \\
\angle B+\angle C=180-\angle A
\end{array}\right\}
$$

$$
=\cos \left(90-\frac{A}{2}\right)
$$

$$
=\sin \left(\frac{A}{2}\right) \quad\{\cos (90-\theta)=\sin \theta\}
$$

24. In figure - 6, a quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that $A B+C D=B C+A D$.

Figure-6
Sol. Sides $A B, B C, C D$ and $D A$ of a quadrilateral $A B C D$ touch a circle at P, Q, R and S respectively. To prove: $A B+C D=A D+B C$.

Proof :
$A P=A S$
$B P=B Q$
$C R=C Q$
DR = DS....(iv)
[Tangents drawn from an external point to a circle are equal]
Adding (1), (2), (3) and (4), we get

$$
\begin{array}{ll}
\Rightarrow & A P+B P+C R+D R=A S+B Q+C Q+D S \\
\Rightarrow & (A P+B P)+(C R+D R)=(A S+D S)+(B Q+C Q) \\
\Rightarrow & A B+C D=A D+B C .
\end{array}
$$

OR

In figure-7, find the perimeter of $\triangle A B C$, if $A P=12 \mathrm{~cm}$.

Figure-7
Sol. $\quad A P=A Q$
[\because Length of tangent drawn from external point are equal]
$A B+B P=A C+C Q$
$A B+B D=A C+C D[\because B P=B D, C Q=C D]$
So, perimeter of $\triangle A B C=A B+B D+D C+C A=2 A P=2(12)=24 \mathrm{~cm}$
25. Find the mode of the following distribution.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Number of students	4	6	7	12	5	6

Sol. Model Class $=30-40$

$$
\begin{aligned}
& \text { Mode }=\ell+\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}} \times \mathrm{h} \\
& =30+\frac{12-7}{2(12)-7-5} \times 10 \\
& =30+\frac{5}{12} \times 10 \\
& =30+4.17=34.17
\end{aligned}
$$

26. 2 cubes, each of volume $125 \mathrm{~cm}^{3}$, are joined end to end. Find the surface area of the resulting cuboid.

Sol. Volume of cube $=125 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& (\text { edge })^{3}=125 \\
& \text { edge }=5 \mathrm{~cm}
\end{aligned}
$$

\therefore Length of cuboid $=10 \mathrm{~cm}$
Breadth of cuboid $=5 \mathrm{~cm}$
Height of cuboid $=5 \mathrm{~cm}$
TSA of cuboid $=2(10 \times 5+5 \times 5+5 \times 10)$

$$
\begin{aligned}
& 2(50+25+50) \\
& 2 \times 125 \\
& =250 \mathrm{~cm}^{2}
\end{aligned}
$$

SECTION－C

Question numbera 27 to 34 carry 3 marks each

27．A fraction becomes $\frac{1}{3}$ when 1 is subtracted from the numerator and it becomes $\frac{1}{4}$ when 8 is added to its denominator．Find the fraction．
Sol．Let the fraction be $\frac{x}{y}$
Case－I

$$
\begin{align*}
& \frac{x-1}{y}=\frac{1}{3} \\
& \\
\Rightarrow & 3 x-3=y \tag{i}\\
\Rightarrow & 3 x-y=3
\end{align*}
$$

Case－II

$$
\begin{array}{ll}
& \frac{x}{y+8}=\frac{1}{4} \\
\Rightarrow \quad & 4 x=y+8 \\
\Rightarrow \quad & 4 x-y=8
\end{array}
$$

By solving eq ${ }^{n}$（i）\＆（ii）

$$
\begin{aligned}
& 3 x-y=3 \\
& 4 x-y=8 \\
& -\quad+\quad- \\
& \hline-x \quad=-5
\end{aligned}
$$

$$
\begin{aligned}
& x=5 \\
& v=1 ?
\end{aligned} \text { Put } x=5 \text { in }^{x} \mathrm{eq}^{n} \text { (i) then }
$$

$$
y=12
$$

$\therefore \quad$ Fraction $=\frac{x}{y}=\frac{5}{12}$
OR
The present age of a father is three years more than three times the age of his son．Three years hence the father＇s age will be 10 years more than twice the age of the son．Determine their present ages．
Sol．
Let $\quad \begin{aligned} & \text { Father＇s age }=x \\ & \\ & \text { Son＇s age }=y\end{aligned}$
Case－l $x=3 y+3$
Case－I $x=3 y+3$
$\Rightarrow \quad x-3 y=3$
Case－II $(x+3)=2(y+3)+10$
$\Rightarrow \quad x+3=2 y+6+10$
$\Rightarrow \quad x-2 y=13$
By solving eq ${ }^{n}$（i）\＆（ii）

$$
\begin{aligned}
& x-3 y=3 \\
& x-2 y=13 \\
& -\quad+- \\
& -y=-10 \\
& y=10 \text { years } \quad \text { Put } y=10 \text { in eq } \\
& \begin{array}{l}
n \\
x=33 \text { years }
\end{array}
\end{aligned}
$$

Father＇s present age $=x=33$ years
Son＇s present age $=y=10$ years．
28. Use Euclid Division Lemma to show that the square of any positive integer is either of the form 3q or $3 q+1$ for some integer q.
Sol. Let $a \& " b$ be any two positive integers and $b=3$, so by applying EDL -

$$
\begin{array}{ll}
a=b q^{\prime}+r ; & 0 \leq b<r \\
a=3 q^{\prime}+r ; & 0 \leq 3<r
\end{array}
$$

Possible value of $r=0,1,2$
$r=0 \quad r=1 \quad r=2$
$a=3 q^{\prime} \quad a=3 q^{\prime}+1 \quad a=3 q^{\prime}+2$
$a^{2}=\left(3 q^{\prime}\right)^{2} \quad a^{2}=\left(3 q^{\prime}+1\right)^{2}$
$a^{2}=9 q^{\prime 2} \quad a^{2}=9 q^{\prime 2}+6 q^{\prime}+1$
$a^{2}=\left(3 q^{\prime}+2\right)^{2}$
$a^{2}=3\left(3 q^{\prime 2}\right) \quad a^{2}=3\left(3 q^{\prime 2}+2 q^{\prime}\right)+1$
$a^{2}=9 q^{\prime 2}+12 q^{\prime}+4$
$a^{2}=3 q$
$a^{2}=3 q+1$
$a^{2}=9 q^{\prime 2}+12 q^{\prime}+3+1$
$a^{2}=3\left(3 q^{\prime 2}+4 q^{\prime}+1\right)+1$
$a^{2}=3 q+1$
29. Find the ratio in which the y-axis divides the line segment joining the points $(6,-4)$ and $(-2,-7)$. Also find the point of intersection.
Sol. Let the ratio be $\mathrm{k}: 1$ and the point of intersection $\mathrm{R}(0, \mathrm{y})$

	$3: 1$ $k: 1$	
P	$R(0, y)$	$(-2,-7)$

By section formula

$$
\begin{aligned}
& x=\frac{m x_{2}+n x_{1}}{m+n}=\frac{k(-2)+(1)(6)}{k+1}=0 \\
& 0=-2 k+6 \\
& 2 k=6 \\
& k=3 \\
& y=\frac{m y_{2}+n y_{1}}{m+n}=\frac{k(-7)+(1)(-4)}{k+1}=\frac{-7 k-4}{k+1}
\end{aligned}
$$

Put k $=3$

$$
\begin{aligned}
& y=\frac{-21-4}{4}=\frac{-25}{4} \\
& R(x, y)=\left(0, \frac{-25}{4}\right)
\end{aligned}
$$

Ratio is $\mathrm{k}: 1$ or $3: 1$
and point of intersection $R\left(0, \frac{-25}{4}\right)$

OR

Show that the points $(7,10),(-2,5)$ and $(3,-4)$ are vertices of an isoceles right triangle.
Sol. In isosceles right triangle sum of square of two sides is equal to sphere of third side and two side are equal.

By distance formula
Now, $A B=\sqrt{(7-(-2))^{2}+(10-5)^{2}}$
$=\sqrt{9^{2}+5^{2}}$
$=\sqrt{81+25}=\sqrt{106}$
$B C=\sqrt{(-2-3)^{2}+[5-(-4)]^{2}}$
$=\sqrt{5^{2}+9^{2}}$
$=\sqrt{25+81}=\sqrt{106}$
$\mathrm{AC}=\sqrt{(7-3)^{2}+(-10-(-4))^{2}}$
$=\sqrt{4^{2}+14^{2}}$
$=\sqrt{16+196}=\sqrt{212}$
Hence, $A B=B C=\sqrt{106}$
and $A B^{2}+B C^{2}=(\sqrt{106})^{2}+(\sqrt{106})^{2}$
$=106+106=212=A C^{2}$
If the sum of the squares of two sides is equal to the square of the third side then by triangle is right angled triangle.

So $(7,10),(-2,5),(3,4)$ are coordinates of isosceles right triangle.
30. Prove that $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A$

Sol. $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A$
L.H.S.
$\Rightarrow \quad \sqrt{\frac{1+\sin A}{1-\sin A} \times \frac{1+\sin A}{1+\sin A}}$
$\Rightarrow \sqrt{\frac{(1+\sin A)^{2}}{(1)^{2}-\sin ^{2} A}} \Rightarrow \sqrt{\frac{(1+\sin A)^{2}}{\cos ^{2} A}}$
$\Rightarrow \frac{1+\sin A}{\cos A} \quad \Rightarrow \quad \frac{1}{\cos A}+\frac{\sin A}{\cos A}$
$\Rightarrow \quad \sec A+\tan A \quad$ R.H.S.
31. For an A.P., it is given that the first term (a) $=5$, common difference $(d)=3$ and the $n^{\text {th }}$ term $\left(a_{n}\right)=50$.

Find n and sum of first n terms $\left(S_{n}\right)$ of the A.P.
Sol. First term (a) $=5$
common difference (d) $=3$
$\mathrm{n}^{\text {th }}$ term $\left(\mathrm{a}_{\mathrm{n}}\right)=50$
$a_{n}=a+(n-1) d$
$\Rightarrow \quad 50=5+(n-1) 3$
$\Rightarrow \quad 45=(n-1) 3$
$\Rightarrow \quad(\mathrm{n}-1)=15$
$\Rightarrow \quad \mathrm{n}=16$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{16}{2}[2 \times 5+(15) 3]$
$=8[10+45]$
$=8 \times 55$
$\mathrm{S}_{\mathrm{n}}=440$
32. Construct a $\triangle A B C$ with sides $B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle A B C$.
Sol. Step1. Construct a $\triangle \mathrm{ABC}$ with given data
Step. 2 draw a angle $\angle B A X$.
Step. 3 put on 4 equal parts on $A X$ such as.
$A A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}$

Step. 4 join B to A_{4}, and draw line segment from A_{3} such as $A_{3} B^{\prime} \| A_{4} B$.
Step. 5 draw a line segment $B^{\prime} C \| B C$ thus $A B^{\prime} C^{\prime}$ is required triangle

Draw a circle of radius 3.5 cm . Take a point P outside the circle at a distance of 7 cm from the centre of the circle and construct a pair of tangents to the circle from that point.

Sol.

Steps of contruction
(1) Take any point O of given plane as centre draw a circle of 3.5 cm radius, locate a point P 7 cm away from O join OP.
(2) Bisect OP , let M be the mid point of OP
(3) Taking M as centre and MO as raidus draw a circle
(4) Let this circle intersect the previous circle at Q and R.
(5) Join $P Q$ and $P R$. PQ and $P R$ are required tengents,
33. Read the following passage and answer the questions given at the end:

Diwali Fair

A game in a booth at a Diwali Fair involves using a spinner first. Then, if the spinner stops on an even number, the player is allowed to pick a marble from a bag. The spinner and the marbles in the bage are respresented in Figure - 8.
Prizes are given, when a black marbles is picked. Shweta plays the same once.

Figure-8
(i) What is the probability that she will be allowed to pick a marble from the bag ?
(ii) Suppose she is allowed to pick a marble from the bag, what is the probability of getting a prize, when it is given that the bag contains 20 balls out of which 6 are black ?
Sol. Total numbers $=6$
(i) Favourable case $=5, \quad\{4,10,8,6,2\}, P$ (topick marble from bag) $=\frac{5}{6}$
(ii) Favourable case $=6, \quad$ Total case $=20, P($ of getting prize $)=\frac{6}{20}=\frac{3}{10}$
34. In figure-9, a square $O P Q R$ is inscribed in a quadrant $O A Q B$ of a circle. If the radius of circle is $6 \sqrt{2} \mathrm{~cm}$, find the area of the shaded region.

Figure-9

Sol. So area of $O A Q B=\frac{1}{4} \pi r^{2}$

$=\frac{1}{4} \times \frac{22}{7} \times(6 \sqrt{2})^{2} \quad(r=6 \sqrt{2})$
$=\frac{1}{4} \times \frac{22}{7} \times 36 \times 2=56.57 \mathrm{~cm}^{2}$
$\mathrm{OR}=\mathrm{OP}=\mathrm{PQ}=\mathrm{RQ}$ (square)
So $(\mathrm{OP})^{2}+(\mathrm{PQ})^{2}=(6 \sqrt{2})^{2}=36 \times 2$
$a^{2}+a^{2}=72$
$2 a^{2}=72$
$a=6$
area of $(O P Q R)=a^{2}=(6)^{2}=36 \mathrm{~cm}^{2}$.(ii)
area of shaded region = area of quadrant - area of square [by equation (i) \& (ii)]
$=56.57$ - 36
$=20.57 \mathrm{~cm}^{2}$

SECTION-D

Question number 35 to 40 carry 4 marks each.

35. Obtain other zeroes of the polynomial $p(x)=2 x^{4}-x^{3}-11 x^{2}+5 x+5$
if two of its zeroes are $\sqrt{5}$ and $-\sqrt{5}$.
Sol. $\quad P(x)=2 x 4-x 3-11 x 2+5 x+5$
As $x=\sqrt{5}$ is zero, $(x-\sqrt{5})$ will be factor, of $P(x)$
As $x=-\sqrt{5}$ is zero $(x+\sqrt{5})$ will be factor, of $P(x)$
Therefore $x 2-5$ will be factor of $P(x)$

$$
\begin{gathered}
2 x^{2}-x-1 \\
x^{2}-x \sqrt{2 x^{4}-x^{3}-11 x^{2}+5 x+5} \\
2 x^{4}-10 x^{2} \\
\frac{-\quad+}{-x^{3}-x^{2}+5 x+5} \\
\begin{array}{c}
-x^{3} \quad+5 x \\
+\quad-x^{2}+5 \\
-x^{2}+5 \\
+\quad-
\end{array} \\
\frac{0}{4}
\end{gathered}
$$

$$
\begin{aligned}
P(x) & =\left(x^{2}-5\right)\left(2 x^{2}-x-1\right)+0 \\
& =\left(x^{2}-5\right)\left(2 x^{2}-2 x+x-1\right) \\
& =\left(x^{2}-5\right)[2 x(x-)+1(x-)] \\
& =\left(x^{2}-5\right)(x-1)(2 x+1)
\end{aligned}
$$

Therefore other zeros will be $x=1, x=-\frac{1}{2}$

> OR

What minimum must be added to $2 x^{3}-3 x^{2}+6 x+7$ so that the resulting polynomial will be divisible by $x^{2}-4 x+8 ?$
Sol.

$$
\begin{gathered}
x ^ { 2 } - 4 x + 8 \longdiv { \begin{array} { l }
{ 2 x ^ { 3 } - 3 x ^ { 2 } + 6 x + 7 } \\
{ 2 x ^ { 3 } - 8 x ^ { 2 } + 1 6 x } \\
{ + \quad - }
\end{array} } 2 x + 5 \\
\frac{5 x^{2}-10 x+7}{5 x^{2}-20 x+40}
\end{gathered} \frac{-\quad+\quad-}{10 x-33}
$$

So $-10 x+33$ should be added to polynomial so that resulting polynomial will be divisible by $x^{2}-4 x+8$.
36. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their correspoinding sides.
Sol. Given : Two triangles $A B C$ and $P Q R$ such that
$\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$
[Shown in the figure]

To prove : $\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{CA}}{\mathrm{RP}}\right)^{2}$.
Construction : Draw altitudes $A M$ and $P N$ of the triangle $A B C$ and $P Q R$.
Proof : $\operatorname{ar}(\mathrm{ABC})=\frac{1}{2} \mathrm{BC} \times \mathrm{AM} \quad$ and $\quad \operatorname{ar}(P Q R)=\frac{1}{2} Q R \times P N$
So, $\quad \frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{\frac{1}{2} \mathrm{BC} \times \mathrm{AM}}{\frac{1}{2} \mathrm{QR} \times \mathrm{PN}}=\frac{\mathrm{BC} \times \mathrm{AM}}{\mathrm{QR} \times \mathrm{PN}}$

Now, in $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$,

$$
\begin{array}{ll}
\angle \mathrm{B}=\angle \mathrm{Q} & {[\text { As } \triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}]} \\
\angle \mathrm{M}=\angle \mathrm{N} & {\left[90^{\circ} \text { each }\right]}
\end{array}
$$

So, $\triangle \mathrm{ABM} \sim \Delta \mathrm{PQN} \quad$ [AA similarity criterion]
Therefore, $\quad \frac{A M}{P N}=\frac{A B}{P Q}$
Also, $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$
[Given]
So, $\quad \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}$
[From (i) and (ii)]
Therefore, $\frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{\mathrm{BC}}{\mathrm{QR}} \times \frac{\mathrm{AB}}{\mathrm{PQ}}$

$$
\begin{align*}
& =\frac{A B}{P Q} \times \frac{A B}{P Q} \tag{iii}\\
& =\left(\frac{A B}{P Q}\right)^{2}
\end{align*}
$$

> Now using (iii), we get

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{CA}}{\mathrm{RP}}\right)^{2} .
$$

37. Sum of the areas of two squares is $544 \mathrm{~m}^{2}$. If the diffeence of their perimeter is 32 m , find the sides of the two squares.
Sol. Let a, b are the sides of two square. Area's will be $a^{2} \& b^{2}$, Perimeter will be $4 a, 4 b$
Given $\mathrm{a}^{2}+\mathrm{b}^{2}=544$
and $4 a-4 b=32$
$a-b=8$
Put a from (ii) in equation (i)
$(8+b)^{2}+b^{2}=544$
$64+b^{2}+16 b+b^{2}=544$
$2 b^{2}+16 b-480=0$
$b^{2}+8 b-240=0$
$b^{2}+20 b-12 b-240=0$
$b(b+20)-12(b+20)=0$
$(b+20)(b-12)=0$
$b=12$ or $b \neq-20$ as it is side
from equation (ii)
$a-12=8$
$a=20$
Sides will be $20 \mathrm{~m} \& 12 \mathrm{~m}$

OR

A motorboat whose speed is $18 \mathrm{~km} / \mathrm{h}$ in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream.
Sol. Speed of boat in still water $(x)=18 \mathrm{~km} / \mathrm{hr}$
Speed of strean $=y \mathrm{~km} / \mathrm{hr}$

$$
\begin{aligned}
& \frac{24}{18-y}-\frac{24}{18+y}=1 \\
& \frac{1}{18-y}-\frac{1}{18+y}=\frac{1}{24} \\
& \frac{18+y-18+y}{324-y^{2}}=\frac{1}{24} \\
& \frac{2 y}{24-y^{2}}=\frac{1}{24} \\
& 48 y=324-y^{2} \\
& y^{2}+48 y-324=0
\end{aligned}
$$

$y^{2}+54 y-6 y-324=0$
$y(y+54)-6(y+54)=0$
$(y+54)(y-6)=0$
$y=6 \mathrm{~km} / \mathrm{hr} \quad \mathrm{y}=-54 \mathrm{~km} / \mathrm{hr}$ (Not possible)
38. A solid toy is in the form of a hemisphere surmounted by a right circular cone of same radius. The height of the cone is 10 cm and the radius of the base is 7 cm . Determine the volume of the toy. Also find the area of the coloured sheet required to cover the toy. (Use $\pi=\frac{22}{7}$ and $\sqrt{149}=12.2$)
Sol. $\quad \mathrm{r}=7 \mathrm{~cm}, \mathrm{~h}=10 \mathrm{~cm}$

Volume to Toy $=$ Volume of hemisphere + Volume of cone.
$=\frac{2}{3} \pi r^{3}+\frac{1}{3} \pi r^{2} h$
$=\frac{2}{3} \times \frac{22}{7} \times 7 \times 7 \times 7+\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 10$
$=\frac{2156}{3}+\frac{1540}{3}=\frac{3696}{3}$
$=1232 \mathrm{~cm}^{3}$
$=$ slant height $\ell=\sqrt{10^{2}+7^{2}}=\sqrt{149}$
Area of colour sheet required $=$ C.S.A of cone + C.S.A of hemisphere

$$
\begin{aligned}
& =\pi r \ell+2 \pi r^{2} \\
& =\frac{22}{7} \times 7 \times \sqrt{149}+2 \times \frac{22}{7} \times 7 \times 7 \\
& =22 \times 12.2+308=576.4 \mathrm{~cm}^{2}
\end{aligned}
$$

39. A statue 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal. (Use $\sqrt{3}=1.73$).
Sol.

Height of pedestal
$A C=h+1.6$
In $\triangle \mathrm{ACB}$
$\tan 45^{\circ}=\frac{\mathrm{AC}}{\mathrm{AB}}=1$
$\frac{h}{A B}=1$
$\mathrm{h}=\mathrm{AB}$
Now in $\triangle A D B$

$$
\begin{align*}
& \frac{A D}{A B}=\tan 60^{\circ} \Rightarrow \sqrt{3}=\frac{h+1.6}{h}=\sqrt{3} \tag{i}\\
& \Rightarrow \sqrt{3} \mathrm{~h}-\mathrm{h}=1.6 \\
& \mathrm{~h}[\sqrt{3}-1]=1.6 \\
& \mathrm{~h}=\frac{1.6}{\sqrt{3}-1}=\frac{1.6[\sqrt{3}+1]}{2} \\
& \Rightarrow 0.8[\sqrt{3}+1] \mathrm{m} . \\
& \Rightarrow 0.8(1.73+1) \\
& \Rightarrow 0.8(2.73)=2.184 \mathrm{~m} \text { Ans. }
\end{align*}
$$

40. For the following data, draw a 'less than' ogive and hence find the median of the distribution.

Age (in years)	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Number of persons	5	15	20	25	15	11	9

Sol.

Age (In Years)	Less than C.F.
Less than 10	5
Less than 20	20
Less than 30	40
Less than 40	65
Less than 50	80
Less than 60	91
Less than 70	$\underline{100}$

The distribution given below shows the number of wickets taken by bowlers in one-day cricket matches.
Find the mean and the median of the number of wickets taken.
Sol.

No.of Wickets	No.of bowlers $\left(\mathrm{f}_{\mathrm{i}}\right)$	x_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$20-60$	7	40	280
$60-100$	5	80	400
$100-140$	16	120	1920
$140-180$	12	160	1920
$180-220$	2	200	400
$220-260$	3	240	720
	$\sum \mathrm{f}_{\mathrm{i}}=45$	$\sum \mathrm{x}_{\mathrm{i}}=840$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=5640$

Mean $=(\bar{X})=\frac{\sum f_{i} x_{i}}{\sum f_{i}}$
$\Rightarrow \frac{5640}{45}=125.33$

No.of wi	f_{i}	c.f.
$20-60$	7	7
$60-100$	5	12
$100-140$	16	28
$140-180$	12	40
$180-220$	2	42
$220-260$	3	45

$$
\begin{aligned}
& \text { Median } \Rightarrow m=\ell+\left(\frac{\frac{N}{2}-\text { c.f }}{2}\right) \times h \\
& h=40, \frac{N}{2}=\frac{\sum f_{i}}{2}=\frac{45}{2}=22.5
\end{aligned}
$$

c.f. $=12$
$\mathrm{f}=16$
$\ell=100$
$m=100+\left(\frac{22.5-12}{16}\right) \times 40$
$\Rightarrow \quad 100+\left(\frac{10.5}{16}\right) \times 40$
$\Rightarrow \quad 100+26.25$
$m \Rightarrow 126.25$

