

AIIMS MBBS Entrance Test 2018 Examination Paper with Answer & Solutions

(BASED ON MEMORY RETENTION)

Date: 27-05-2018 (Sunday) | Time: 3.00 pm - 6.30 pm | Evening Session

NOTE:-

- 1. Questions are collected from the appeared students.
- 2. The solutions are prepared by the expert faculty team of Resonance Pre-medical division, Kota.
- 3. Questions may not be in the order or sequence as asked in the actual examination paper.
- 4. The questions collected may not have all the options similar to the actual paper. Students are advised to see the question and answer / solutions.
- 5. Actual AIIMS Paper has 200 questions but we have included only those many questions which have been collected from the students as per following table :-

Subject	No. of Question in Actual AIIMS Paper	No. of Question in this Paper		
Physics	60	23		
Chemistry	60	34		
Biology	60	42		
G.K. & MAT	20	14		
Total	200	113		

1. Which logic gate has only one input and one are put.

Ans. **NOT GATE**

2. In YDSE there is a point P on the screen. What is path difference at point P. Given d = 1 mm, y = 2 mm

Path difference at P Sol.

 $\Delta x = dsin\theta$

If θ is small

 $\Delta x = d \tan \theta$

$$\Delta x = \frac{dy}{D}$$

Now d = 1 mm; y = 2 mm and $\Delta = 1$ meter

$$\Delta x = \frac{10^{-6} \times 2 \times 10^{-6}}{1} = 2 \times 10^{-6} meter$$

 $\frac{Q}{m}$ = was given E is given what is horizontal displacement of charge particle when it decend a distance 3.

of y meter. Given
$$\frac{Q}{m} = 9.6 \times 10^7 \text{ c/kg}$$
, E = 5 × 10⁵ V/m , y = 84 cm, g = 10 m/s²

Suppose particle falls down a distance y in t time Sol.

$$y = \frac{1}{2}gt^2$$
; $t = \sqrt{\frac{2y}{g}}$

Now

$$x = \frac{1}{2}a_x t^2$$
 \Rightarrow $x = \frac{1}{2} \cdot \frac{QE}{m} \cdot \frac{2y}{g}$

Now
$$\frac{Q}{m} = 9.6 \times 10^7 \text{ c/kg (given)}$$

$$E = 5 \times 10^5 \text{ V/m}$$

$$Y = 84 \text{ cm}$$

$$g = 10 \text{ m/sec}$$

$$x = \frac{1}{2} \times \frac{9.6 \times 10^7 \times 5 \times 10^5 \times 2 \times 84 \times 10^{-2}}{10}$$

$$x = 403.2 \times 10^{10} \text{ meter}$$

$$x = 4.03 \times 10^{8} \text{ meter}$$

$$x = 4.03 \times 10^8$$
 meter

4. What type of gate is this,

- Sol. it is or gate.
- 5. Electric field inside the capacitor is E and dielectric constant of material is k. Find charge density σ on the plates. Given E = 6×10^5 V/m, k = 6

Sol.
$$E = \frac{\sigma}{\epsilon_0.K}$$

$$6 \times 10^{5} = \frac{\sigma}{8.85 \times 10^{-12} \times 6}$$

$$\sigma = 36 \times 8.85 \times 10^{-12} \text{ c/s}^{2}$$

$$\sigma = 3.18 \times 10^{-10} \text{ c/m}^{2}$$

6. A cart has mass 2 metric tone and send of 1 metric tone is inside the cart. Now sand start to leak with rate of 0.5 kg/sec then what is the velocity of cart when total sand has come out from the cart.

$$f_{net} = -V_{ree} \cdot \frac{dH}{dt} + F$$

Now
$$V_{rel} = 0$$

$$F_{net} = F$$

$$a=\frac{F}{m}$$

$$m = m_0 - \mu t$$

$$a = \frac{F}{m_0 - \mu t}$$

$$\frac{dV}{dt} = \frac{F}{m_0 - \mu t}$$

$$\int_{0}^{V} dV = F \int_{0}^{t} \frac{dt}{m_0 - \mu t}$$

$$V = \frac{F}{\mu} \ell n \! \left(\frac{m_0}{m_0 - \mu t} \right)$$

Here F = 10 N ; μ = 0.5 kg/sec

 $m_0 = 2$ metric tone

 $m_0 - \mu t = 1$ metric tone

$$V = \frac{10}{0.5} \ln (2) = 20 \times 0.693 = 13.86 \text{m/sec}$$

7. A ring of radius R is kept on water surface. Surface tension of water is T and mass is m. What force required to lift the ring from water surface?

Sol.

$$F_{ex} = mg + 2.T(2\pi R)$$

$$F_{ex} = mg + 2T\pi R$$

8. The minimum and maximum distance of planet from sun is r_{min} and r_{max} . If velocity at r_{max} is V_0 find velocity at r_{min} .

Sol. By angular momentum conservation

$$mV_0 r_{max} = mVr_{min}$$

$$V = \frac{V_0 r_{max}}{r_{min}}$$

9. If a gas changes its temperature from T₁ to T₂ its pressure is P. If C_P is given of the gas what is change in entropy.

Sol.
$$ds = \eta C_p dT$$

$$\frac{ds}{T} = \eta C_P \, \frac{dT}{T}$$

$$ds = \eta C_P \frac{dT}{T}$$

$$\int\limits_{C_1}^{C_2} ds = \eta C_P \int\limits_{T_1}^{T_2} \ \frac{dT}{T}$$

$$\Delta S = \eta C_p \text{ in } \left(\frac{T_2}{T_1}\right)$$

10. If coefficient of performance of A refrigerator is β and heat given to surrounding is Q_2 then what is heat absorbed.

$$\textbf{Sol.} \qquad \beta = \frac{Q_2}{Q_2 - Q_1}$$

$$\beta = \frac{Q_2}{Q_2 - Q_1}$$

so
$$\beta Q_2 - \beta Q_1 = Q_2$$

$$\frac{Q_2(\beta-1)}{\beta}=Q_1$$

11. Frequency of the wave is 50 Hz. Length is 1 meter and mass of string is 10 gm. What is tension in the string.

$$\text{Sol.} \qquad n = \frac{1}{2\ell} \sqrt{\frac{T}{\mu}}$$

$$\mu = \frac{m}{\ell} = \frac{10 \times 10^{-2}}{1} = 10^{-2} \text{kg/meter}$$

$$50 = \frac{1}{2 \times 1} \sqrt{\frac{T}{10^{-2}}}$$

$$2500 = \frac{1}{4} \cdot \frac{T}{10^{-2}}$$

T = 100 Newton.

- **12.** What is lowest wavelength of paschen series.
- Sol. lowest wavelength of paschen series.

$$\frac{1}{\lambda_{min}} = R.(1)^2 \left[\frac{1}{(3)^2} = \frac{1}{(\infty)^2} \right]$$

on solving

$$\lambda_{min} = \frac{9}{R} = 8208 \text{Å}$$

13. In a solenoid A rod of relative permeability μ_r is kept. Total number of turn are N, Area of solenoid is A, length of solenoid is ℓ . What is self inductance of solenoid.

Sol.
$$L = \mu_0 \mu_r . n^2 A \ell$$

Now
$$n = \frac{N}{\ell}$$

$$L = \mu_0 \mu_r \, \frac{N^2}{\ell^2} \, A \ell$$

$$L = \frac{\mu_0 \mu_r \, N^2 A}{\ell}$$

14. Electron is moving parallel to wire. What is force on electron.

Sol.
$$F = QVB \sin\theta$$

$$F = eV\left(\frac{\mu_0 I}{2\pi d}\right) sin(\pi/2) = \frac{\mu_0 eVI}{2\pi d}$$

15. What are resonating frequency for two circuits.

For Ist circuit Sol.

$$w_r = \frac{1}{\sqrt{L_1 C_1}}$$

$$w_r = \frac{1}{\sqrt{L_2 C_2}}$$

For IInd circuit

$$f_r = \frac{1}{2\pi\sqrt{L_1C_1}}$$

$$f_r = \frac{1}{2\pi\sqrt{L_2C_2}}$$

16. Find the charge on 2 μ F.

Sol.

Let potential of A is zero and that of b is V. Applying charge conservation on given circuit.

$$1(V-10) + 2(V-0) + 5(V-10) = 10$$

$$8\dot{V} - 60 = 0$$

$$V = \frac{60}{8} = 7.5 \text{ volt}$$

So charge on $2\mu F = 2 \times 7.5 = 15 \mu C$

17. In LCR circuit inductance is L, resistance is R and quality factor is Q then find capacitance

Sol.
$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

$$Q^2 = \frac{1}{R^2} \frac{L}{C}$$

$$C = \frac{1}{(RQ)^2}$$

18. In forced vibration m = 10 gm, f = 100 Hz and driver force F = 100 cos (20 π t) then what is amplitude of

Sol.
$$A = \frac{F_0}{m(w^2 - w_D^2)}$$

$$A = \frac{100}{0.01 \left[(200\pi)^2 - (20\pi)^2 \right]}$$

$$A = \frac{100}{0.01 \left[(200\pi)^2 - (20\pi)^2 \right]}$$
$$A = \frac{10,000}{\pi^2 \left[40,000 - 400 \right]} [\pi^2 = 10]$$

$$A = \frac{10}{396} = 0.025 \text{ meter}$$

19. Focal length of convex lens = 100 cm and focal length of concave lens = -8 cm. Find the magnification.

Sol. For first lens

$$V = \frac{4f}{4+f}$$

$$V = \frac{(-50) \times (100)}{-50 + 100} = -100 \, \text{cm} \text{ and } m_1 = \frac{V}{4} = 2$$

For second lens

$$V = \frac{4f}{4+f} \qquad \text{now u} = -190 \text{ cm} \qquad f = -8 \text{ cm}$$

$$m_2 = \frac{V}{4} = \frac{f}{4+f} = \frac{-8}{-8-190} = 0.04$$

Total magnification = m₁m₂ = 0.08

20. The radius of two bohr radius of a hydrogen like atom are r_1 and r_2 . Find the wave length of photon when electron jumps from r_2 to r_1 .

Sol. $\begin{aligned} E_2 &= \frac{-Ke^2}{2r_2} \\ E_1 &= \frac{-Ke^2}{2r_1} \\ DE &= E_2 - E_1 = \frac{Ke^2}{2} \left[\frac{1}{r_1} - \frac{1}{r_2} \right] = \frac{Ke^2(r_2 - r_1)}{2 \; r_1 \; r_2} = \frac{hc}{\lambda} \\ \lambda &= \frac{2ch \; r_1 \; r_2}{Ke^2(r_2 - r_1)} \end{aligned}$

21. Assertion: In adiabatic process change in internal energy is equal to work done on gas. Reason: In adiabatic process no heat exchange with surrounding.

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

Ans. (1)

22. Assertion : Gallium arsenide phosphide is used in red L.E.D. **Reason :** Its work function lies b/w 1.65 ev.

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

Ans. (1)

23. Assertion : Viscous force is measurement of resistance of liquid. **Reason :** It converts kinetic energy into heat energy of liquid.

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

Ans. (1)

PART - B (CHEMISTRY)

24. Give IUPAC name of : CH₃ CN

- (1) 2-cyano-5-methyl hept-3-enal
- (3) 2-oxo-5-methyl hept-3-ene-1-nitrile
- (2) 2-formyl-5-methyl hept-3-enenitrile
- trile (4) 1-cyano-1-formyl-4-methyl hex-2-ene

Ans. (2)

Sol. $\begin{array}{c} & \text{CHO} \\ & 6 & 4 & 1 \\ \hline & 5 & 3 & 2 \\ \end{array}$

2-formyl-5-methylhept-3-enenitrile

25. Final product of given Reaction :

C=O

CH₃

C=O

CH₃

Pre-Medical Division Campus:

сн-он

C=O

CH₃

26. Final Product of given reaction :

Ans. (1)

This is a Reimer-Tieman Reaction of phenol.

27. Find product of given reaction :

$$OCH_3$$
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_3
 OCH_4
 OCH_5
 $OCH_$

Ans.

(3)

Sol.

$$\begin{array}{c|c} & CH-CH- \\\hline OCH_3 & NO_2 \\ \end{array}$$

28. Give correct sequences of reaction for following conversion :

- (1) DIBAL –H, NaBH₄, H₃O[⊕]/∆
- (2) H₃O[⊕]/∆, NaBH₄, DIBAL–H
- (3) NaBH₄, DIBAL−H, H₃O[⊕]/∆
- (4) DIBAL-H, H₃O[⊕]/∆, NaBH₄

Ans. (3)

Pre-Medical Division Campus:

(1)
$$CH_3 - C = CH - CH_3$$

 CH_3
(2) $CH_2 = C - CH = CH_2$
 CH_3
(3) $CH_2 = CH - CH = CH_2$
 CH_3
(4) $CH_2 = CH - CH = CH_2$
 CH_3
 $CH_3 - C = CH - CH_3$
 $CH_3 - C = CH - CH_3$
 $CH_3 - C = CH - CH_3$
 $CH_2 = CH - CH_3$
 $CH_3 - C = CH - CH_3$
 $CH_3 - CH_3 - CH_3$
 $CH_3 - CH_3 - CH_3$
 $CH_3 - CH_3$

(3)
$$CH_2 = CH - CH = CH_2$$

(4) $CH_2 = C - CH = CH_2$
 $CH_2 = CH - CH_2$
 $CH_2 = CH - CH_2$
 $CH_2 = CH - CH_2$

Ans. (2)
$$CH_2 = C - CH = CH_2$$
 $CH_2 = C - CH = CH_2$ CH_3 Sol. $CH_2 = C - CH = CH_2$

Ans.

I CH₂

(i) (iii) (iii) (iii) (iii) (iii) (iii) (iv) (1) iii > ii > i > iv (2)
$$1 > iii > iv > i > ii$$
 (3) $iv > i > ii > ii > iv > i > iii$

34. Blue colour disappears in which solution by passing
$$SO_2$$

(1)
$$CrO_4^{2-}$$
, + H_2SO_4 (2) I_2 + Starch (3) $CuSO_4$ (4) I_2 Ans. (2)

Sol.
$$I_2 + SO_2 \longrightarrow I^- + SO_4^{2-} + Starch (deep blue) colourless$$

In HCP of A,
$$\frac{1}{3}$$
 of tetrahedral are occupied by B. What is the formula for compound:
(1) A_2B_3 (2) A_3B_2 (3) AB_3 (4) A_2B

Ans. (2)

Sol. No. of atoms (A) = 6 (hcp); no. of B atoms =
$$\frac{1}{3}$$
 x 12 = 4

A₆B₄ or A₃B₂
$$A_6$$

Ans. (1)
Sol.
$$2H_2O \longrightarrow 2H_2 + O_2$$

 $n = 4e^-$
 $2\text{mol } H_2O = 4 \text{ mol } e$
 $\frac{n_{H_2O}}{2} = \frac{n_e}{4}$

$$2 = \frac{3 \times t}{96500 \times 2} = t = \frac{96500 \times 4}{3 \times 3600} = 35.8 \text{ h}$$

Ans.	(3)	. ,	(3) SO ₂ , NH ₂	(4) CO ₂ , SO ₂			
Sol.	Geometry for SO ₂ & NH ₂ ⁻ is bent, but hybridization are sp ² and sp ³ .						
38. Ans. Sol.	(1) Vol. of container inc (3) Concentration of Ca (2) $K_P = P_{CO_2}$.		(2) Temperature increa (4) Concentration of Ca	ses $a{ m CO}_3$ increases.			
39.	At constant temperatur	e Gases A & B, density	of (A) is twice that of B a	nd molar mass of A is half of B.			
	Ratio of their pressures	s is $\frac{P_A}{P_B}$ is:					
Ans. Sol.	(1) ¼ (2)	(2) 1	(3) 4	(4) 2			
40. Ans. Sol.	Correct order of bond at (1) $SO_2 < H_2S$ (4) Bond angle in $SO_2 \sqcup 1$	angle is: (2) $SO_2 < H_2O$ 20°. but in NH_3 its 107°.	(3) NH ₃ < H ₂ O	(4) NH ₃ < SO ₂			
41. Ans.	Time taken for 12.8 g o (1) 720 s (2)	f a radioactive substance (2) 690 s	e to decay to 0.4 g, is (ha (3) 345 s	alf life is 138s) (4) 69 s			
Sol.	$\frac{0.4}{12.8} = \left(\frac{1}{2}\right)^{n} = n = 5$ $\therefore t = 5 t_{\frac{1}{2}} = 5 \times 1$						
42. Ans.	% s-character of N–H b (1) N ₂ H ₂ (1)	(2) N ₂ H ₄	(3) NH ₃	(4) NH ₄ ⁺			
Sol.	in N ₂ H ₂ , N is sp ² hybrid						
43.	MnO ₂ + NaCl $\xrightarrow{H^+}_{H_2SO_4}$ (1) Mn goes from +4 to (3) Cl ₂ yellow gas is related		ment for above reaction. (2) Cl ⁻ is oxidized (4) SO ₄ ²⁻ reduces to SO	O_2			
Ans. Sol.	$(4) \\ MnO_2 + NaCl \xrightarrow{H_2SO_4} $	MnCl ₂ + Cl ₂					
44.	Ethylene glycol is used as antifreeze to reduce freezing point of water to -2.4°C.						
	What mass of antifreeze is required for 2L water? $(K_f \text{ water} = 1.86 \frac{K \text{ kg}}{\text{mole}})$						
Ans.	(1) 16 kg (2)	(2) 160 g	(3) 1.60 kg	(4) 16 g			
Sol.	$m_{\text{solute}} = \frac{\Delta T_{\text{f}} \times m_{\text{water}} \times N}{K_{\text{g}}}$	$\frac{1_{\text{solute}}}{1.86} = \frac{2.4 \times 2 \times 62}{1.86}$					
	= 160 g.						

In which of the following shape is same but hybridization is different:

37.

45. What is entropy change in 2 mol N₂, when its temperature is taken from 400 K to 800 K, adiabatically.

(1)
$$30\frac{J}{K}$$

(3)
$$40\frac{J}{K}$$

(4)
$$20\frac{J}{K}$$

Ans.

Sol.
$$\Delta S = nC_P \ln \frac{T_2}{T_1} = 2 \times \frac{7}{2} R \times \ln \frac{800}{400} = 40 J/K.$$

46. Calculate ionisation constant for pyridinium chloride,

Given that H^+ ion concent ration is 3.6 x 10^{-4} M and its concentration is 0.02 M.

$$(1) 6.48 \times 10^{-2}$$

$$(2) 6 \times 10^{-6}$$

$$(3) 6 \times 10^{-8}$$

$$(4) 12 \times 10^{-8}$$

Ans.

Sol.
$$K_a = \frac{\left[H^+\right]^2}{C} = \frac{\left(3.6 \times 10^{-4}\right)^2}{0.02}$$

$$= 6.48 \times 10^{-6}$$

Assertion: Benzylamine is less basic then Ethylamine 47.

Reason: Benzene Show +I Effect

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

(3)Ans.

- Ph-CH₂-NH₂ (Benzylamine) have -I effect of Phenyl group while CH₃-CH₂-NH₂ have +I effect. Sol.
- Assertion: C₆H₅–MgBr Reacts with CO₂ and forms benzoic acid. 48.

Reason: CO₂ is electrophile.

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

Ans.

Ans. (2)
Sol.
$$Ph-C-O^-MgBr \xrightarrow{H_3O^+} Ph-COOH$$

49. **Assertion**: Boiling point of α –D-glucose is less then β –D-glucose.

Reason: β –D–glucose is more stable then α –D-glucose

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

Ans. (1)

- B-D-glucose more stable then α -glucose so B.P. and M.P. more for B-D-glucose Sol.
- 50. Assertion: Cimetidine is an antacid.

Reason: Antacid increases secretion of HCl from gastric cells.

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

Ans. (3)

- Sol. Cimetidine is an antacid which suppress secretion of HCI.
- 51. **Assertion :** In Free expansion, $\Delta U = 0$

Reason: No work is done in free expansion.

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

Ans. (2)

Both are true but unrelated. Sol.

52. Assertion: NaCl_(aq) electrolysis produces Na metal.

Reason: Na⁺ is obtained at cathode.

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

Ans. (4)

- **Sol.** Electrolysis of brine produces NaOH, H₂ and Cl₂
- **53.** Assertion : O_2F_2 converts Pu to PuF_6 .

Reason: O₂F₂ is used to remove unreacted Pu from nuclear reaction.

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

Ans. (1)

- **Sol.** Pu + $3O_2F_2 \longrightarrow PuF_6 + 3O_2$; unreacted Pu is separated by fluorination.
- **54. Assertion**: Solubility of gases increases with increase in pressure.

Reason: Dissolution of gas in liquid is exothermic.

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

Ans. (2)

- **Sol.** Difference in pressure is independent of thermodynamics of the process.
- **55.** Assertion: SO₂ is more covalent than SeO₂

Reason: Covalent radius of Se is more than S

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

Ans. (2

- **Sol.** Covalent nature is judged by Fajan's rule.
- **56. Assertion :** In O/W emulsion, soap is mixed

Reason: Soap reduces surface tension

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

Ans. (1)

- **Sol.** For emulsification soap is added in O/W emulsion as it reduces surface tension and forms better colloid.
- **57.** Assertion: $[Co(NH_3)_6]^{3+} \rightarrow [Co(NH_3)_5 H_2O]^{3+}$ colour continuously changes.

Reason: Larger wavelength will be absorbed

- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

Ans. (1)

Sol. H_2O is weaker ligand than NH_3 so λ_{absorb} will be higher.

PART - C (BIOLOGY)

- **58.** Which is incorrect about E.coli
 - (1) It is diploid
 - (2) It is found in human intestine
 - (3) Transformation, Transduction, Conjugation can show
 - (4) Can be used in Recombinant DNA technology
- Ans. (1)
- **59.** Codons of alanine

(1) CUC, CUA, CUG

(2) GGG, GGU, GGA

(3) GUG, GUC, GUA

(4) GCU, GCC, GCG

Ans. (4)

- 60. Which of the following can synthesize all types of RNA
 - (1) r-RNA

(2) t-RNA

(3) m-RNA

(4) DNA

Ans. (4)

61. Diagram of hypogynous, perigynous, Epigynous are given respectively

Find out the correct option for the above diagrams a,b,c,d that has correct examples

- (1) a-Mustard, b- Rose, c- Plum, d- Guava
- (2) a-Cucumber, b- Plum, c- Rose, d- Brinjal
- (3) a-China rose, b- Guava, c- Rose, d-Mustard (4) a-Mustard, b- Rose, c- Plum, d- Brinjal
- Ans. (1)
- **62.** Which of the following are synthetic phytohormone

(1) IBA, IAA, BAP

(2) 2,4-D, NAA, BAP

(3) Zeatin, IBA, IAA

(4) NAA, IAA, 2,4-D

Ans. (2)

- **63.** Which of the following is correct
 - (1) Cyanobacteria makes mycorrhiza Which absorbs phosphate from soil
 - (2) Azotobacter is symbiotic nitorgen fixing bacteria
 - (3) In paddy field, cyanobacteria is used to decrease soil microbes
 - (4) Methanobacterium feed cellulose in anaerobic condition
- Ans. (4)

Pre-Medical Division Campus:

64.	rne genetic material	OI φ x 174 IS						
	(1) SSDNA	(2) SSRNA	(3) DSDNA	(4) DSRNA				
Ans.	(1)							
65.	Heterozygous tall is crossed with recessive parent .What will the percentage of homozygous recess							
	(1) 75 %	(2) 25 %	(3) 100 %	(4) 50 %				
Ans.	(4)	()	· ,	()				
	()							
66.	In <i>Mirablilis ialapa.</i> re	ed flowered plant is	crossed with white flow	ered plant. What will the pher	notvpic			
	ratio in F ₂ generation.	-			- 71			
	(1) 1 : 1 : 1	(2) 1 : 2 : 1	(3) 3 : 1	(4) 1 : 1				
Ans.	(2)	(2) 1 . 2 . 1	(6) 6 . 1	(1) 1 . 1				
7 11101	(-)							
67.	Which of the following	r is correct about som	aclone plants					
07.	(1) Somatic hybrid	g io correct about som	(2) Same genetic	constitution				
	(3) Different genetic of	constitution	(4) None	Constitution				
Ans.		Constitution	(4) None					
Alis.	(2)							
60	Fishes in outrophic la	ke is died due to						
68.	Fishes in eutrophic la	ke is died due to	(O) Northinest annial					
	(1) Oxygen		(2) Nutrient enrich	nment				
	(3) CO ₂		(4) None					
Ans.	(1)							
		// /						
69.	Which is required in g							
	(1) ATP, ADP, NAD ⁺ ,							
	(2) FAD ⁺ , ADP, ATP,							
	(3) NADP ⁺ , ATP, GTF		·					
	(4) NAD ⁺ , NADP ⁺ , AT	P, Glucose, cytoplasr	nic enzymes					
Ans.	(1)							
70.	Which is correct link r	reaction						
	(1) Pyruvic acid + NA	I) + (,()-A	ehydrogenase Mg ⁺⁺ → Acetyl Co	$D-A + NADH.H^{+} + CO_{2}$				
		D .	la la colona de la colona dela colona de la colona dela colo					
	(2) Pyruvic acid + FA		Mg^{++} Acetyl Co	o-A + FADH.H ⁺ + CO ₂				
	(3) Pyruvic acid + NA	DP ⁺ + Co-A Pyruvate	e dehydrogenase Acetyl (Co-A + NADPH.H ⁺ + CO ₂				
	(5) i jiano dola i ivi		Mg ⁺⁺	20				
	(4) Pyruvic acid + NA		ehydrogenase Mg ⁺⁺ → Acetyl Co	o-A + NADH.H⁺				
Δne	(1)	·	··· · 9					
Ans.	(1)							

71.							
	(i) Auxin	(A) Ripening of fruit					
	(ii) ABA	(B) Bolting					
	(iii) Gibberellin	(C) Sensitivity against	adverse conditions				
	(iv) Ethephon	(D) parthenocarpy in to	omato				
	(1) i–C, ii–D, iii–B, iv–A	A	(2) i-D, ii-C, iii-A, iv-	-В			
	(3) i–D, ii–C, iii–B, iv–A	A	(4) i-A, ii-C, iii-B, iv-	-D			
Ans.	(3)						
72.	Select the incorrect sta	atement					
	(1) Microelements involve N, P, Mn, Cu,Mo.						
	(2) The concentration of	of microelements is 10 m	n mole/kg.				
	(3) If the concentration	is more than 10 m mole	kg, they become toxic				
	(4) The deficiency of m	nicroelements causes sy	mptoms of disease				
Ans.	(1)						
73.	All the digestive enzym	nes like carbohydrase, p	rotease, lipase, DNase,	RNase are found in :			
	(1) Lysosome	(2) peroxisome	(3) Glyoxysome	(4) Vacuole			
Ans.	(1)						
74.	RNA is found in:						
	(1) Chloroplast, mitoch	ondria	(2) Golgibody, Chloro	pplast			
	(3) Lysosome, Mitocho	ondria	(4) Centrioles, Mitoch	nondria			
Ans.	(1)						
75 .	The value of 2.4-D is 2	25 ppm. How many amo	unt of 2.4-D should rea	uire for making its 5 litres, 15 litres			
	and 25 litres solutions			3,			
	(1) 25 gm, 50 gm, 75 gm		(2) 50 gm, 175 gm, 525 gm				
	(3) 250 gm, 750 gm, 12		(4) 125 gm, 375 gm,				
Ans.	(4)		() 3 / 3 /				
76.	Assertion: C ₃ cycle is	found in all plant					
	Reason : Kranz anatomy is found in C ₃ plant						
	(1) Both A and R are true and R is the correct explanation of A.						
(2) Both A and R are true but R is not correct explanation of A.							
	(3) A is true but R is false.						
	(4) A and R are false.						
Ans.	(2)						

77.	What was the reason of mass extinction during Mesozoic era?					
		e to meteorite falling on ea		(2) Due to continental of		
	(3) Gla	aciation		(4) Volcanic eruption		
Ans.	(1)					
78.	Which	hormone helps in detectio	n of pr	egnancy?		
	(1) hC	G		(2) hPL		
	(3) Pro	plactin		(4) Progesterone		
Ans.	(1)					
79.	Match the following and select the correct option –					
	A.	LSD	i.	CNS depressant		
	B.	Morphine	ii.	Hallucinogen		
	C.	Cocaine	iii.	Effects cardiovascular system		
	D.	Nicotine	iv.	Interferes with dopamine		
	Options:					
	(1) A-ii	i, B-i, C-iv, D-iii		(2) A-iii, B-1, C-iv, D-ii		
	(3) A-i,	, B-iv, C-ii, D-iii		(4) A-iv, B-i, C-iii, D-ii		
Ans.	(1)					
80.	Which	among the following alcoh	olic be	everage will be formed by distillar		
	(1) Brandy			(2) Wine		
	(3) Be	er		(4) All		
Ans.	(1)					
81.	Optimo	Optimum pH for activation of pepsinogen is-				
	(1) 1.5	- 2		(2) 6		
	(3) 8			(4) 10		
Ans.	(1)					
82	\//hich	of the following is correct?				

Column-I		Column-II		
(1)	Blood & lymph	(a)	Connective tissue	
(2)	Bones and muscles	(b)	Skeletal tissue	
(3)	Skin epidermis	(c)	Nervous tissue	
(4)	Cartilage and muscles	(d)	Connective tissue	

(1) Ans.

83. Select the option having correct matching for different parts of male reproductive system of cockroach –

- (1) A Phallic gland, B- Seminal vesicle, C- Vas deferens, D Ejaculatory duct
- (2) A Phallic gland, B- Seminal vesicle, C- Ejaculatory duct, D Vas deferens
- (3) A Seminal vesicle, B- Phallic gland, C- Vas deferens, D Ejaculatory duct
- (4) A Phallic gland, B- Vas deferens, C- Seminal vesicle, D Ejaculatory duct

Ans. (1)

- 84. Select the option with correct matching of animal group and its examples
 - (1) Mammalian Platypus, Rattus, Camelus, Pavo
 - (2) Aves Neophron, Struthio, Sphenodon, Passer
 - (3) Reptilia Calotes, Heloderma, Uromastix, Draco
 - (4) Amphibia Bufo, Hyla, Rhacophorus, Ophiosaurus

Ans. (3)

- **85.** Select the correct matching-
 - (1) Cuboidal epithelium Alveolar wall
 - (2) Columnar epithelium Stomach
 - (3) Ciliated epithelium Intestine
 - (4) Squamous epithelium Germinal epithelium

Ans. (2)

- **86.** Cross bridges between actin and myosin is broken up by
 - (1) Hydrolysis of ATP
 - (2) Binding of ATP to the myosin head
 - (3) Binding of calcium to the subunit of troponin
 - (4) Exposure of tropmyosin

Ans. (2)

- **87.** Only erythropoiesis occurs in
 - (1) Erythroblast

(2) Proerythroblast

(3) Myeloid tissue

(4) Haemocytoblast

Ans. (2)

- 88. Which among the following hormone initiate development of secondary sexual characters in female?
 - (1) GnRH

(2) Estradiol

(3) Estriol

(4) Progesterone

Ans. (1)

- **89.** Which of the following are about 90% absorbed in the nephron?
 - (1) Glucose and amino acids Active process
 - (2) Glucose and amino acids Passive process
 - (3) Cl⁻, NH₃, K⁺ Passive process
 - (4) Cl⁻, NH₃, K⁺ Active process
- Ans. (1)
- **90.** Infective stages of malarial parasite is found in -
 - (1) Salivary glands of mosquito
 - (2) Intestine of mosquito
 - (3) Haemolymph of mosquito
 - (4) Stomach wall of mosquito
- Ans. (1)
- 91. Full form of GEAC is -
 - (1) Genetic engineering approval committee
 - (2) Genetic engineering advisory council
 - (3) Genetic export approval committee
 - (4) Global environmental advisory committee
- Ans. (1)
- **92. Assertion**: Eli Lily prepared two DNA sequences corresponding to A and B chain of human insulin and introduced them in the plasmid of *E.coli* to produce polypeptide chains of insulin.

Reason: Chains A and B were produced separately, extracted and combined by creating disulphide bonds to form human insulin.

- (1) Both A and R are true and R is the correct explanation of A.
- (2) Both A and R are true but R is not correct explanation of A.
- (3) A is true but R is false.
- (4) A and R are false.
- Ans. (2)
- **93. Assertion**: We can develop nematode resistant plants by RNA interference technology.

Reason: Secondary metabolites can be produced by genetic engineering in plants.

- (1) Both A and R are true and R is the correct explanation of A.
- (2) Both A and R are true but R is not correct explanation of A.
- (3) A is true but R is false.
- (4) A and R are false.
- Ans. (2)
- **94. Assertion**: GM plants are more useful than normal plants.

Reason: Golden rice is rich in β -carotene

- (1) Both A and R are true and R is the correct explanation of A.
- (2) Both A and R are true but R is not correct explanation of A.
- (3) A is true but R is false.
- (4) A and R are false.
- Ans. (2)

95. Assertion: Secondary metabolites of plants can be useful for human.

Reason: Abrin and ricin are toxins.

- (1) Both A and R are true and R is the correct explanation of A.
- (2) Both A and R are true but R is not correct explanation of A.
- (3) A is true but R is false.
- (4) A and R are false.

Ans. (2)

96. Assertion: The endosperm in gymnosperm is formed after fertilization.

Reason: The endosperm of gymnosperm is formed by triple fusion.

- (1) Both A and R are true and R is the correct explanation of A.
- (2) Both A and R are true but R is not correct explanation of A.
- (3) A is true but R is false.
- (4) A and R are false.

Ans. (4)

97. Assertion: A & B are antigens present on RBCs

Reason: The blood group is AB blood group only.

- (1) Both A and R are true and R is the correct explanation of A.
- (2) Both A and R are true but R is not correct explanation of A.
- (3) A is true but R is false.
- (4) A and R are false.

Ans. (2)

98. Assertion: BOD (Biological oxygen demand) is a device that is used to measure quality of water

Reason: High BOD is observed in highly polluted water

- (1) Both A and R are true and R is the correct explanation of A.
- (2) Both A and R are true but R is not correct explanation of A.
- (3) A is true but R is false.
- (4) A and R are false.

Ans. (1)

99. Assertion: Deforestation sequesters CO₂ from atmosphere.

Reason: Global warming is beneficial for plants and human health.

- (1) Both A and R are true and R is the correct explanation of A.
- (2) Both A and R are true but R is not correct explanation of A.
- (3) A is true but R is false.
- (4) A and R are false.

Ans. (4)

PART - D (G.K & MENTAL ABILITY)

100.	What is colour of Milestones used at state highways?					
	(1) Yellow	(2) Blue	(3) Green	(4) Red		
Ans.	(3)					
101.	Who is the chairman of	Rajyasabha				
Ans.	Vankaiya Naidu					
100		0014				
102.	What is the full form of					
Ans.	Global system for Mo	bile communication				
103.	Find the odd one out					
	٥	N				
	(1)	(2)	(3)	(4)		
Ans.	(4)			_		
104.	Who is the natural host	of Nipah virus?				
Ans.	BAT					
105.	Find the missing term.					
	8 / 8 \ 4	3 / 4 \ 1	5 / 4 \ 3			
	6	1/	2			
	(1) 2	(2) 3	(3) 4	(4) 5		
Ans.	(2)	(2) 3	(0) 4	(4) 3		
106.	What is the required run rate if 50 runs is needed to win a T-20 match?					
	Statement-I: 3/5 of the	e total allotted overs have	e been completed.			
	Statement-2 : Each bowler has bowled 3 overs.					
	(1) Statement-1 is requ	ired	(2) Statement-2 is requi	red		
	(3) Both 1 & 2 are requ	ired	(4) Neither 1 nor 2 is re-	quired		
Ans.	(1)					
107.	Social media is a popul	ar medium of spreading	information?			
	• •		ormation of social media			
	-	edia information is authe				
	(1) Statement-1 is requ		(2) Statement-2 is requi	red		
	(3) Both 1 & 2 are requ		(4) Neither 1 nor 2 is re-			
Ans.	(1)					

Pre-Medical Division Campus:

108.	Establish the relat	ion						
		3						
	Google ?							
Ans.	Facebook							
109.	2, 3, 5, 8, 7 by usi	ng these five digits how	many 3 digits numbers	can be formed which a	are divisible by 2			
	(1) 24	(2) 30	(3) 6	(4) 50				
Ans.	(4)	. ,	` ,	,				
110.	He decided to wea	ar his best suit for the pr	esentation.					
	Statement-I : It is mandatory to wear suit for the presentation.							
	Statement-2 : he	does not possess any o	ther good clothes to we	ear.				
	(1) Statement-1 is required (2) Statement-2 is required							
	(3) Both 1 & 2 are	required	(4) Neither 1 no					
Ans.	(4)							
111.	A man purchased	computer at Rs. 10,00	0. He further got it rep	aired in Rs. 1000. He	sold it with 10%			
	profit. What is the selling price?							
Ans.	12100							
112	Throo friends in or	ollogo election get 200	200 and 000 votes res	ocativaly What % of the	total votos the			
112. Three friends in college election got 300, 800 and 900 votes respectively. What % of the total					total votes the			
	winner candidate	// //	(0) 500((4) 550(
A a	(1) 40%	(2) 45%	(3) 50%	(4) 55%				
Ans.	(2)							

113. Find the mirror image.

Ans.