历 Resonance Educating for better tomorrow

Date of Examination : 24th November 2013
Time 12.30 to $\mathbf{1 4 . 3 0} \mathrm{Hrs}$

INSTRUCTION TO CANDIDATES

1. On the answer sheet, fill up all the entries carefully in the space provided, ONLY In BLOCK CAPITALS. Use only BLUE or BLACK BALL PEN for making entries and marking answer. Incomplete / incorrect / carelessly filled information may disqualify your candidature.
2. Write the Q.P. Code No. mentioned above on YOUR answer sheet (in the space provided). Otherwise your answer sheet will NOT be examined.
3. The question paper contain 80 multiple-choice question. Each question has 4 options, out of which only one is correct. Choose the correct answer and mark a cross in the corresponding box on the answer sheet as shown below :

Q.	a	b	c	d
22				

4. A correct answer carries 3 marks and 1 mark will be deducted for each wrong answer.
5. All rough work may be done on the blank sheet provided at the end of the question paper.
6. PLEASE DO NOT MAKE ANY MARK OTHER THAN (X) IN THE SPACE PROVIDED ON THE ANSWER SHEET. Answer sheets are evaluated with the help of a machine. Due to this, CHANGE OF ENTRY IS NOT ALLOWED.
7. Scratching or overwriting may result in wrong score. DO NOT WRITE ANYTHING ON THE BACK OF ANSWER SHEET.
8. Use of a nonprogrammable calculator is allowed.
9. Periodic table is provided at the end of this question paper.
10. The answers / solutions to this question paper will be available on our website - www.iapt.org.in by 30th November 2013.
11. Attempt the examination honestly. Any dishonestly will disqualify you.

CERTIFICATES \& AWARDS

i) Certificates to top 10% students of each centre.
ii) Merit certificates to statewise Top 1\% students.
iii) Merit certificate and a prize in term to Nationwise Top 1\% students.
12. Result sheets and the "centre top 10\%" certificates of NSEC are dispatched to the Professor in charge of the centre. Thus you will get your marks from the Professor in charge of your centre by January 2014 end.
13. 300 (or so) students are called for the next examination - Indian National Chemistry Olympiads (INChO). Individual letters are sent to these students ONLY.
14. Gold medals may be awarded to TOP 35 students in this entire process.
15. No querries will be entertained in this regard.

ASSOCIATION OF CHEMISTRY TEACHERS

NATIONAL STANDARD EXAMINATION IN CHEMISTRY 2013-2014

1. The number of optically active stereoisomers of tartaric acid, (HOOC.CHOH.CHOH.COOH) is
(A) 4
(B^{*}) 2
(C) 1
(D) 3

Sol. (B)
Tartaric acid has 2 identical chiral carbon and only 2 optically active stereoisomers.
2. Which of the following structure is aromatic ?

I

II

III

IV
(A) Structures I and II
(B*) Structure I only
(C) Structures II only
(D) Structure III only

Sol. (B)

Only I follows Huckel's rule and aromatic.
3. Salicylic acid on treatment with bromine water will give
(A) 2-bromo-6-hydroxybenzoic acid
(B*) 2,4,6-tribromophenol
(C) 2,6-dibromobenzoic acid
(D) 1,3-dibromo-6-hydroxybenzoic acid

Sol. (B)

Salicylic acid on treatment with bromine water give 2,4,6-tribromophenol.
4. In which of the following compounds is the oxidation number of the transition metal, zero ?
(A) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left(\mathrm{OH}_{2}\right)$
(B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$
(C) $\left[\mathrm{Ni}\left(\mathrm{CO}_{4}\right)\right]$
(D) $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{3}\right]$

Sol. (C)
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$, oxidation number of Ni is zero.
5. If each of the following salts has solubility product $\mathrm{Ksp}=1 \times 10^{-9}$, which of them is least soluble in water ?
(A) XY
(B) $X_{2} Y$
(C) $X Y_{2}$
(D) $\mathrm{X}_{3} \mathrm{Y}$

Sol. (A)
For XY , solubility $=\sqrt{\mathrm{K}_{\mathrm{sp}}}=\sqrt{10^{-9}}=10^{-4.5}$
This is the least value.
6. A DNA sample stored at $4^{\circ} \mathrm{C}$ was removed from the refrigerator and heated in a hot water bath with temperature increasing gradually. Which bond of the DNA molecule will break first?
(A) Phosphodiester bond
(B) Glycoside linkage
(C) Hydrogen bond
(D) Covalent bond

Sol. (C)

It is the weakest bond among the given.
7. Which of the following salts produces the most basic solution ?
(A) $\mathrm{Al}(\mathrm{CN})_{3}$
(B) $\mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
(C) FeCl_{3}
(D) KCl

Sol. (B)
Anionic hydrolysis produces most basic solution
i.e. $\mathrm{CH}_{3} \mathrm{COOK}$
8. Which of the following compounds has zero dipole moment?
(A) NH_{3}
(B) NF_{3}
(C) BF_{3}
(D) CHCl_{3}

Sol. (C)
BF_{3} due to symmetrical structure
9. An isotone of ${ }_{32} \mathrm{Ge}^{76}$ is
(A) ${ }_{32} \mathrm{Ge}^{77}$
(B) ${ }_{33} \mathrm{As}^{77}$
(C) ${ }_{34} \mathrm{Se}^{77}$
(D) ${ }_{35} \mathrm{Br}^{80}$

Sol. (B)

$$
\begin{aligned}
{ }_{32} \mathrm{Ge}^{76}, \text { no. of neutrons } & =\mathrm{A}-\mathrm{Z} \\
& =76-32 \\
& =44
\end{aligned}
$$

No. of neutrons in ${ }_{33} \mathrm{As}^{77}$ is 44 .
10. One of the constituents of German silver is
(A) Ag
(B) Mg
(C) Cu
(D) Al

Sol. (C)
It is an allay of copper, zinc \& nickel
11. A catalyst is a substance that
(A) undergoes chemical change to accelerate the rate of the reaction
(B) decreases the energy of activation of the reaction
(C) increases the kinetic energy of the reaction
(D) lowers the potential energy of the products with respect to that of the reactants.

Sol. (B)

Catalyst lowers the activation energy of reaction.
12.

D-Glucose

D-Mannose

D-Galactose

The above structures are related to each other as
(A) identical substance
(B*) diastereomers
(C) enantiomers
(D) epimers

Sol. (B)
All the above structures differs in configuration at one or two stereocentre.
13. Which one of the following is not a valid structure for dinitrogen oxide?
$\ddot{\mathrm{N}}=\ddot{\mathrm{N}}=\ddot{\mathrm{O}}$
(I)

(III)

\qquad ö.
(IV): $: \ddot{N}$
 (IV)
(A) I
(B) II
(C) III
(D) IV

Sol. (A)
I is not valid i.e. 'N' can't expand its octet
14. A mixture of acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $10 \% \mathrm{KI}$ is titrated against $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (Sodium thiosulphate) solution using starch indicator. The colour of the reaction mixture at the end point is
(A) Yellow
(B) Blue
(C) Green
(D) Colourless

Sol. (C)

Cr^{3+} ion is produced in solution. So green solution.
15. The gas which liberates bromine from a solution of KBr is
(A) Cl_{2}
(B) I_{2}
(C) SO_{2}
(D) HI

Sol. (A)
Cl_{2} is oxidising agent.
16. The bond order of NO^{+}ion is
(A) 1
(B) 2
(C) 2.5
(D) 3

Sol. (D)
Bond order of NO^{+}is 3
17. What is NOT true for both cellulose and DNA?
(A) Both are long chain polymers
(B*) Both contains similar monomers
(C) Both have glycosidic Linkages
(D) Both can break down by enzymatic hydrolysis

Sol. (B)

For cellulose β-D.Glucose is the monomer but for DNA the monomer is Deoxyribose sugar, nuclei acids and phosphate.
18. An enzyme working at $P^{H} 4.5$ became inactive when treated with a hydrophobic surfactant. The enzyme may be
(A) Cytosolic
(B) Extracellular
(C*) Peripheral membrane bound
(D) Integral Membrane bound

Sol. (C)

Peripheral membrane bound enzyme working at $\mathrm{P}^{H} 4.5$ became inactive when treated with a hydrophobic surfactant.
19. Which of the following molecules cannot show geometric isomerism?
(A) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{NOH}$
$\left(\mathrm{B}^{*}\right)\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{NOH}$
(C) $\mathrm{HO}-\mathrm{N}=\mathrm{N}-\mathrm{OH}$
(D) $\mathrm{Cl} \bigwedge_{\mathrm{Cl}}$

Sol. (B)
 -does not show Geometrical Isomerism.
20. Which of the following is most stable?
(A*) 2, 3 Dimethyl-1,2-butene
(B) 2-Butene
(C) 2-Methyl-1,2-butene
(D) 1-Butene

Sol. (A)
It has more alpha H , hence more stabilized by hyperconjugation.
21. RNA forms loop structure because
(A) It always contain uracyl instead of thymine
(B*) of presence of nearby complementary bases
(C) all RNAs have to from loop structure to function
(D) they are always single stranded

Sol. (B)
H -bond is formed is between complementary bases.
22. Which is the strongest oxidising agent among the species given below?
(i) In^{3+}
$\mathrm{E}^{0}=-1.34 \mathrm{~V}$
(ii) $A u^{3+}$
$\mathrm{E}^{0}=1.40 \mathrm{~V}$
(iii) Hg^{2+}
$\mathrm{E}^{0}=0.867 \mathrm{~V}$
(iv) Cr^{3+}
$\mathrm{E}^{0}=-0.786 \mathrm{~V}$
(A) Cr^{3+}
(B) Au^{3+}
(C) Hg^{2+}
(D) In^{3+}

Sol. (B)

Au^{3+} is most powerful oxidising agent among given cations.
Higher is SRP value, greater is oxidising power.
23. The kinetics of an enzyme-catalyzed hydrolysis reaction is represented by the following graph, where [S] is the substrate concentration, and v is the rate of reaction :

The kinetic course of the reaction can be described as
(A) First order, zero order
(B) Zero order, first order
(C) First order, second order
(D) Second order, first order

Sol. (A)
Initially reaction is $1^{\text {st }}$ order \& then zero order.
24. The number of unpaired electrons in Ni^{2+} is
(A) 0
(B) 2
(C) 3
(D) 4

Sol. (B)
$\mathrm{Ni}^{2+}: 3 \mathrm{~d}^{8}$

No. of unpaired electron = 2
25. The colourless ion from among the following is
(A) Mn^{2+}
(B) Cu^{+}
(C) Cr^{3+}
(D) Fe^{2+}

Sol. (B)
Cu^{+}(No unpaired electron)
26. The metal carbonyl which is paramagnetic is
(A) $\mathrm{Ni}(\mathrm{CO})_{4}$
(B) $\mathrm{V}(\mathrm{CO})_{6}$
(C) $\mathrm{Cr}(\mathrm{CO})_{6}$
(D) $\mathrm{Fe}(\mathrm{CO})_{5}$

Sol. (B)
[$\mathrm{V}(\mathrm{CO})_{6}$] has one unpaired electron
$V: 3 d^{3} 4 s^{2} \quad$ or $\quad 3 d^{5} \quad t_{2 g}^{2,2,1}, e_{g}^{0,0}$
27. The percentage composition of nitrogen in an organic compound can be determined by
(A*) Dumas method
(B^{\star}) Kjeldahl method
(C) Victor's method
(D) Hoffman"s method

Sol. (AB)

Both Dumas and Kjeldahl method are used to estabilish percentage composition of nitrogen in an organic compound.
28. High spin complexes having coordination number ' 6 ' are usually formed through
(A^{*}) $s p^{3} d^{2}$ hybridisation
(B) $d^{2} s p^{3}$ hybridisation
(C) $s p^{3}$ hybridisation
(D) $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation

Ans. (A)
29. The blood red color obtained in the detection of nitrogen and sulphur together in an organic compound in Lassaigne's test is due to
(A) $[\mathrm{Fe}(\mathrm{CNS})]^{+}$
($\left.\mathrm{B}^{*}\right)\left[\mathrm{Fe}(\mathrm{CNS})_{2}\right]^{+}$
(C) $[\mathrm{Fe}(\mathrm{CNS}) 3]^{-}$
(D) $\left[\mathrm{Fe}(\mathrm{CNS})_{2}\right]^{2+}$

Sol. (B)
In Lassaigne's test the Fe^{3+} form complex with CNS^{-}ion.
30. A protein attached to carbohydrate moiety is called as
(A) Lipoprotein
(B) Nucleoprotein
(C) Apoprotein
(D*) Glycoprotein

Sol. (D)

It is simple fact.
31. Which of the following aqueous solution has the lowest electrical conductance ?
(A) $0.01 \mathrm{M} \mathrm{CaCl}_{2}$
(B) $0.01 \mathrm{M} \mathrm{KNO}_{2}$
(C) $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
(D) $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COCH}_{3}$

Sol. (D)
acetone $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ is non-electrolyte in aq. medium.
32. The reddish-brown gas formed when nitric oxide is oxidized by air is
(A) NO_{2}
(B) $\mathrm{N}_{2} \mathrm{O}_{4}$
(C) $\mathrm{N}_{2} \mathrm{O}_{5}$
(D) $\mathrm{N}_{2} \mathrm{O}_{3}$

Sol. (A)

$$
2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})} \text { (reddish brown gas) }
$$

33. The electronic level which allows the hydrogen atom to absorb, but not emit a photon is
(A) 1 s
(B) 2 s
(C) $2 p$
(D) 3 s

Sol. (A)
Electron in 1s can absorb light but can't emit.
34. Bell metal is an alloy of copper and
(A) Tin
(B) Aluminium
(C) Zinc
(D) Nickel

Sol. (A)
Bell metal : An alloy of tin \& copper.
35. Europium (Eu) and Terbium (Tb) attain stable $4 f^{7}$ configuration by exhibiting oxidation states of
(A) +2 and +4
(B) +3 and +4
(C) +2 and +3
(D) +1 and +3

Sol. (A)
$\mathrm{Tb}:[\mathrm{Xe}] 4 \mathrm{f}^{9} 6 \mathrm{~s}^{2}$
$\mathrm{Eu}:[\mathrm{Xe}] 4 \mathrm{f}^{7} 6 \mathrm{~s}^{2}$
36. Which of the following reaction parameters will change due to addition of a catalyst
(A) Free energy
(B) Only equilibrium
(C) Only rate constant
(D) Both equilibrium constant and rate constant

Sol. (C)
Rate constant is increased by catalyst
37. A plot of $1 /\left[\mathrm{NO}_{2}\right]$ verses time for decomposition of NO_{2} was found to be linear. This means that the reaction
(A) Is zero order with respect to $\left[\mathrm{NO}_{2}\right]$
(B) Is first order with respect to $\left[\mathrm{NO}_{2}\right]$
(C) Is second order with respect to $\left[\mathrm{NO}_{2}\right]$
(D) Order cannot be determined from the information given

Sol. (C)
$\frac{1}{\left[\mathrm{NO}_{2}\right]} \mathrm{v} / \mathrm{s}$ time, linear so $2^{\text {nd }}$ order reaction
38.

The carbanion expels a leaving group LG to yield an alkene as shown above by
(A*) $E_{1} c b$ mechanism
(B) E_{1} mechanism
(C) E_{2} mechanism
(D) Such a reaction does not take place

Sol. (A)

The carbanion intermediate is formed only in E_{1} cb mechanism.
39. Select the most correct statement among the following :
(A) SN^{1} mechanism takes place in non-polar solvents
(B) SN^{2} mechanism in chiral substrates gives racemic mixtures as products
(C*) SN^{1} mechanism is encouraged by polar solvents
(D) The solvent never influences the mechanism

Sol. (C)
SN ${ }^{1}$ reaction proceed through the formation of carbocation intermediate, which is most favored in more polar solent.
40. Fehlings solution is
(A) AgNO_{3} solution +NaOH solution $+\mathrm{NH}_{4} \mathrm{OH}$
(B) Alkaline solution of Cupric ion complexed with citrate ion
(C*) Copper sulphate + sodium potassium tartarate +NaOH
(D) Copper sulphate solution

Sol. (C)

Fehlings solution is alkaline solution of CuSO_{4} with rochell salt i.e. sodium potassium tartarate.
41.

The correct name of the product obtained is
(A) cis-1,2-dibromocyclohexane
(B) cis-1,4-dibromocyclohexane
(C*) trans-1,2-dibromocyclohexane
(D) trams-1,4-dibromocyclohexane

Sol. (C)

Addtion of bromine is anti and the product is trans-1,2-dibromocyclohexane.
42. A solution of sodium metal in liquid ammonia is strongly reducing due to the presence of
(A) sodium atoms
(B) sodium hydride
(C) sodium amide
(D) solvated electrons

Sol. (D)
43. The number of unpaired electrons in Ni^{2+} ion is 2 ,therefore its spin multiplicity is
(A) 2
(B) 1
(C) 3
(D) 4

Sol. (C)
$M=2 \times|S|+1$
$S=2 \times \pm \frac{1}{2}$
$=2 \times 1+1$
$=1$
$=3$
44. A cold aqueous solution of PbCl_{2} gives golden yellow precipitate on addition of
(A) KCl solution
(B) KI solution
(C) NaCl solution
(D) $\mathrm{K}_{2} \mathrm{SO}_{4}$ solution

Sol. (B)

45. In the reaction given below :

the product obtained will contain :

I

II
(A) Only Compound I
(B) Only Compound II
(C*) Both compound I and II
(D) this substitution cannot take place

Sol. (C)

The given reaction is hydrolysis and it follows SN^{1} mechanism and both I and II are formed.
46. Acetone and propen-2-ol are
(A) enantiomers
(B^{*}) keto-enol tautomers
(C) diastereoisomers
(D) meso compounds

Sol. (B)
 and

47. How old is a fossil bone whose ${ }^{14} \mathrm{C}$ content is 15.0% of that living bone ?

Half life of ${ }^{14} \mathrm{C}$ isotope is $5.73 \times 10^{3} \mathrm{yr}$.
(A) 25488 yr
(B) 15688 yr
(C) 388 yr
(D) 6818 yr

Sol. (B)

$$
t=\frac{2.303 \times 5.73 \times 10^{3}}{0.693} \log \left[\frac{a}{0.15 a}\right]=15688 \text { year } .
$$

48. How much chemical energy is fixed in the form of ATP upon complete oxidation of one mole of glucose ? (Hydrolysis of ATP yields $7.5 \mathrm{kcal} / \mathrm{mole}$)
(A) 360
(B) 300
(C) 270
(D) 200

Sol. (C)
One mole of Glucose upon complete oxidation gives 36 ATP with is equivalent to $36 \times 7.5 \mathrm{kcal} / \mathrm{mole}=270$ kcal/mole
49. The value of the constant in Nernst equation
$E=E^{0}-\frac{\text { constant }}{n} \ln Q$ at $25^{\circ} \mathrm{C}$ is
(A) 0.592
(B) 0.0592
(C) 0.296
(D) 0.0296

Sol. (D)
$E=E^{\circ}-\frac{0.059}{n} \log Q$.
$E=E^{\circ}-\frac{R T}{n F} \ln Q$
Constant $=\left(\frac{R T}{F}\right)=$
$=0.0296$
50. The chemical formula of Plaster of Paris is
(A) $2 \mathrm{CaSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(C) $3 \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(D) $\mathrm{CaSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$

Sol. (A)
$\mathrm{CaSO}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O} \quad \Rightarrow 2 \mathrm{CaSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
51. The $\mathrm{K}_{\mathrm{p}} / \mathrm{K}_{\mathrm{c}}$ ratio for the reaction :

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \text {, at } 127^{\circ} \mathrm{C} \text { is }
$$

(A) 0.0301
(B) 0.0831
(C) 1.0001
(D) 33.26

Sol. (A)
$\begin{array}{ll}\mathrm{K}_{\mathrm{P}}=\mathrm{K}_{\mathrm{C}}(\mathrm{RT})^{\Delta n} & \Delta \mathrm{n}=-1 \\ \frac{\mathrm{~K}_{\mathrm{P}}}{\mathrm{K}_{\mathrm{C}}}=\frac{1}{\mathrm{RT}}=0.0301 . & \end{array}$
52. Van Arkel method of purification of metals involves converting the metal to a
(A) Volatile compound
(B) Volatile unstable compound
(C) Non-volatile stable compound
(D) Non-volatile unstable compound

Sol. (B)

53. Which of the following reaction mechanisms does not involve carbocation as an intermediate ?
(A) Baeyer-Villiger Oxidation
(B) Beckman rearrangement
(C) Fries Rearrangement
(D*) Diels-Alder Reaction

Sol. (D)
Diels Alder reaction is a concerted reaction in which neither cation nor anion is formed.
54. Which of the following statements is correct?
(A) $-\mathrm{NO}_{2}$ group activates the benzene ring for attack of electrophile at ortho and para position.
(B^{*}) $-\mathrm{NH}_{2}$ group activates the benzene ring for attack of electrophile at ortho and para position.
(C) Both- NO_{2} group as well as $-\mathrm{NH}_{2}$ group activate the benzene ring for attack of electrophile at ortho and para position.
(D) Neither $-\mathrm{NO}_{2}$ group nor $-\mathrm{NH}_{2}$ group activate the benzene ring for attack of electrophile at ortho and para position.
Sol. (B)
$-\mathrm{NO}_{2}$ group is strong electron withdrawing due to -M whereas $-\mathrm{NH}_{2}$ group is strong electron donating group due to +M effect.
55. Which of the following does not have an active methylene group ?
(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2}$
(B) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$
(C) $\mathrm{PhCOCH}_{2} \mathrm{CN}$
(D*) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$

Sol. (D)
Most appropriate answer is D . $\operatorname{In} \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{NH}_{2}$ the $\propto \mathrm{H}$ is not strong acidic.
56. $\quad \mathrm{CH}_{2}=\mathrm{CHCl}$ is monomer of
(A) Poly styrene
(B) Natural rubber
(C*) PVC
(D) Nylon-6

Sol. (C)

57. A cell membrane acts as a semi-permeable selective boundary because it contains
(A) Lipids and carbohydrates
(B) Proteins and carbohydrates
(C) Proteins and Nucleic acids
(D*) Lipids and proteins

Sol. (D)

It is fact.
58. $4 s$ orbital has lesser energy than 3d orbital because it has
(A) Greater value of n
(B) Lesser value of I
(C) Lesser value of $(\mathrm{n}+\mathrm{l})$
(D) $I=0$

Sol. (C)

59. When zinc rod is directly placed in copper sulphate solution
(A) the blue colour of the solution starts intensifying
(B) the solution remains electrically neutral
(C) the temperature of the solution falls
(D) the weight of zinc rod starts increasing

Sol. (B)
60. The linear molecule among the following is
(A*) CO_{2}
(B) NO_{2}
(C) SO_{2}
(D) ClO_{2}

Sol. (A)
61. In the compound $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, the oxidation state of sulphur is
(A) -2
(B) +2
(C) +4
(D) +6

Sol. (B)
62. The pH of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH},\left(\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}, \mathrm{~K}_{\mathrm{w}}=10^{-14}\right)$, is
(A) 1.0
(B) 5.7
(C) 11.1
(D) 13.0

Sol. (C)

$$
\begin{aligned}
\mathrm{P}^{\mathrm{OH}}= & \frac{1}{2}\left[\mathrm{pk}_{\mathrm{b}}-\log \mathrm{C}\right] \\
& =\frac{1}{2}[4.76+1] \\
& =\frac{5.76}{2}=2.88 \simeq 2.9 \\
& \mathrm{pH}=14-2.9=11.1
\end{aligned}
$$

63. In animals, the stored carbohydrates is
(A) Starch
(B^{*}) Glycogen
(C) Sucrose
(D) Fructan

Sol. (B)
64. For a chemical reaction $\Delta \mathrm{H}$ is negative and $\Delta \mathrm{S}$ is positive. This reaction is
(A) spontaneous at all temperatures
(B) nonspontaneous at all temperature
(C) spontaneous only at high temperature
(D) spontaneous only at low temperature

Sol. (A)

$$
\begin{aligned}
\Delta \mathrm{G} & =\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
& =(-) \quad(+) \\
& =(-) \text { spontaneous at all temperature. }
\end{aligned}
$$

65. Which of the following salt/s of $\mathrm{H}_{3} \mathrm{PO}_{3}$ exists ?
(I) $\mathrm{NaH}_{2} \mathrm{PO}_{3}$
(II) $\mathrm{Na}_{2} \mathrm{HPO}_{3}$
(III) $\mathrm{Na}_{3} \mathrm{PO}_{3}$
(A) I and II only
(B) I, II and IIII
(C) II and III only
(D) III only

Sol. (A)
$\mathrm{H}_{3} \mathrm{PO}_{3}$ is dibasic so
$\mathrm{NaH}_{2} \mathrm{PO}_{3} \& \mathrm{Na}_{2} \mathrm{HPO}_{3}$ both exist.
66. Which of the following molecules is most volatile ?
(A*) Salicylaldehyde
(B) p-nitrophenol
(C) p-hydroxybenzoic acid
(D) m-hydroxybenzoic acid

Sol. (A)

Salicydehyde is O-hydroxybenzaldehyde. It is volatile as it has intramolecular hydrogen bonding.
67. The isoelectric point of an amino acid is:
(A) The pH at which it exists in the acidic form
(B) The pH at which exists in the basic form
(C*) The pH at which it exists in the Zwitterion form
(D) The pH which is equal to its pK_{a} value

Sol. (C)
At PI, the total(+) ion concentration is equal to total (-) ion concentration.
68. A gas shows positive Joule-Thomson Effect below its
(A) Boyle Temperature
(B) Critical Temperature
(C) Inversion Temperature
(D) Transition Temperature

Sol. (C)
69. The following data was recorded for the reaction :
$X+Y \longrightarrow P$

Set No.	$[\mathrm{A}]$	$[B]$	Rate of the reaction
I	0.1 M	0.2 M	0.001
II	0.2 M	0.2 M	0.004
III	0.2 M	0.8 M	0.008

The order of the reaction is
(A) 1
(B) 2
(C) 2.5
(D) 3

Sol. (C)

$$
\begin{aligned}
& r=K[A]^{X}[B]^{Y} \\
& \frac{r_{2}}{r_{1}}=\left(\frac{0.2}{0.1}\right)^{X}=\left(\frac{0.004}{0.001}\right) \\
& =(2)^{X}=4 \quad X=2 \\
& \frac{r_{3}}{r_{2}}=\left(\frac{0.8}{0.2}\right)^{Y}=\left(\frac{0.008}{0.004}\right) \\
& =(4)^{Y}=2 \\
& =(2)^{2 Y}=2^{1} \quad \text { So }
\end{aligned} \begin{aligned}
& 2 Y=1 \\
& \\
&
\end{aligned}
$$

70. Which solution has the highest pH ?
(A) $0.01 \mathrm{M} \mathrm{CaCl}_{2}$
(B) $0.01 \mathrm{M} \mathrm{KNO}_{2}$
(C) $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$
(D) $0.01 \mathrm{M} \mathrm{CH}_{3} \mathrm{COCH}_{3}$

Sol. (B)

KNO_{2} [WASB]

71. The minimum number of H^{+}ions that can be released by an amino acid is
(A*) 1
(B) 2
(C) 3
(D) 4

Sol. (A)
72. Which of the following molecular structures is NOT possible?
(A) OF_{2}
(B) SF_{2}
(C) OF_{4}
(D) SF_{4}

Sol. (C)
73. K_{p} for the reaction given below is 1.36 at 499 K . Which of the following equaitons can be used to calculate K_{c} for this reaction?
$\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})} \longrightarrow \mathrm{N}_{2} \mathrm{O}_{3(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
(A) $\mathrm{Kc}=\frac{[(0.0821) \times(499)]}{[1.36]}$
(B) $\mathrm{Kc}=\frac{[(1.36) \times(0.0821)]}{[499]}$
(C) $\mathrm{Kc}=\frac{[1.36]}{[(0.0821) \times(499)]}$
(D) $\mathrm{Kc}=\frac{[(1.36) \times(499)]}{[0.0821]}$

Sol. (C)
$\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{p}}=1.36$
$K_{C}=\frac{K_{P}}{(R T)^{1}}=\frac{1.36}{0.0821 \times 499}$
74. A 55-kDa protein was acid hydrolysed to obtain a mixture of amino acids. How many amino acids could be present in the solution?
(A) 550
(B*) 500
(C) 1000
(D) 1100

Sol. (B)

$37-\mathrm{kDa}$ is equivalent to 333 unit, hence $55-\mathrm{kDa}$ is equivalent to approx 500 units.
75. Which of the following phenols is most soluble in aqueous sodium bicarbonate ?
(A) 2,4-dihydroxyacetophenone
(B) p-cyanophenol
(C) 3,4-dicyanophenol
(D*) 2,4,6-tricyanophenol

Sol. (D)

2,4,6-tricyanophenol is most acidic. It readily form soluble sodium salt and evolves CO_{2} gas.
76. $\quad 6.24 \mathrm{~g}$ of ethanol are vaporized by supplying 5.89 kJ of heat energy. What is the enthalpy of vapourisation of ethanol?
(A) 43.42 kJ
(B) 47.0 kJ
(C) 21.75 kJ
(D) 435.0 kJ

Sol. (A)
Enthalpy of vapourisation, $\Delta \mathrm{H}_{\text {vap }}=\frac{5.89}{\left(\frac{6.24}{46}\right)} \mathrm{kJ} / \mathrm{mol}=43.42 \mathrm{~kJ} / \mathrm{mol}$
77. How many hyperconjugative structures are possible in the following carbocation?

(A) 1
(B) 3
(C) 5
(D*) 6

Sol. (D)
There are only $6 \alpha[H+D+T]$ atoms.
78. The ions which give black precipitates on passing $\mathrm{H}_{2} \mathrm{~S}$ gas in acidic medium are
(A) Al^{3+} and Ni^{2+}
(B) Ni^{2+} and Co^{2+}
(C) Cu^{2+} and Bi^{3+}
(D) Zn^{2+} and Mn^{2+}

Sol. (C)

$$
\underbrace{\mathrm{Cu}^{2+} \text { or } \mathrm{Bi}^{3+}}_{2^{\text {nd }} \text { Group cation }} \xrightarrow{\mathrm{H}_{2} \mathrm{~S} / \mathrm{H}^{+}} \underset{\text { Black }}{\mathrm{CuS}} \downarrow+\underset{\text { Black }}{\mathrm{Bi}_{2} \mathrm{~S}_{3}}
$$

79. Which of the following is not a resonating structure for the phenoxide ion ?

I
(A) I

II

III

IV
(B) II
(C) III
(D*) IV

Sol. (D)
-ve change is never delocalized on the meta positon.
80. Which of the following statements is true for the reaction given below?

$\xrightarrow{\text { alkaline } \mathrm{KMnO}_{4}} \quad \mathrm{P}$
(A^{*}) P is a meso compound 2,3-butanediol formed by syn addition.
(B) P is a meso compound 2,3-butanediol formed by anti addition.
(C) P is a racemic mixture of d - and $l-2,3-$-butanediol formed by anti addition.
(D) P is a racemic mixture of d - and $l-2,3--$ butanediol formed by syn addition.

Sol. (A)
cis-2-Butene undergoes hydroxylation by syn addition forming meso product.

ON zor	PW tor	w_{\beth} 001		${ }_{86}^{1199}$	${ }^{[152]}$	யว 96		$\mathrm{n}_{\mathrm{d}}^{\operatorname{ln+2}}$ nem	dN $\varepsilon 6$	$\bigcap_{z 6}^{\text {E0 } 182}$	ed 16	$\begin{aligned} & \text { vozze } \\ & 4 \perp 1 \end{aligned}$	$\underset{88}{\text { Lezz }}$	
$\underset{\sim}{\text { unfeal }}$	ع0E9	${ }^{\text {unimes }}$	${ }^{\text {EMPrat }}$	0 Oc	${ }^{20891}$	Lurar	${ }^{\text {Lпinj }}$		\％	mue	${ }^{16}$	2rami	$\frac{188 .}{}$	
9人	W1	dヨ	OH	K	91	PD	П	US	ud	p	d	05	E	
unquap	\％994	ung	шпй	${ }_{\text {unsarssp }}$	$\xrightarrow{\text { c9 }}$		wricane	Ln	19	09	69	\％ 8 S	шイи	эр！иечıue ＊$^{\text {\％}}$

												ธิ 901		\square	$\begin{gathered} \text { Lzor } \\ 17 \\ \text { unpol } \end{gathered}$	＊＊ 201－6B	ey 88	$\begin{aligned} & \text { ㄷzz } \\ & \text { Iل } \\ & \hline 18 \end{aligned}$
［120］	012	1602	${ }^{0660 \%}$	2208	0002	65002	26961	e0ssi	2zist	${ }^{\text {Lnitse }}$	wnuteg			${ }^{\text {¢ }}$	Letil		Unicis	¢117304
U8	7 7	Od	18	9d	｜1．	6H	ПV	7 d	I	50	Oy	M	EI	HH	n7	＊	Eg	S9
${ }_{\text {¢ }} 98$		8	${ }_{\text {¢ }}^{\text {8nusq }}$	pea	L18	¢80	${ }_{\text {pob }}^{6 L}$	82，	$\stackrel{41}{4}$	¢п¢ 9 \％	${ }_{\text {Sinuau }}$	¢		zL	Hem	OL－LS	9\％	cry
6 6ट®	－6821	09 1zk	92121	\％ 2811	2081	LFCL！	18.101	${ }^{\text {zriol }}$	19.201	$4{ }^{4} 101$	［6］	${ }^{6} 6.56$	23626	t2z＇16	${ }^{\text {90688 }}$		${ }^{29} 8$	${ }^{88598}$
OX	I	O1	9S	US	U｜	00	6\％	Pd	4y	ny	21	OW	GN	$d Z$	人		1 S ．	9y
pra		$\xrightarrow{\text { urfin }}$		${ }^{\text {of }}$	${ }^{6 \%}$	$\xrightarrow{\text { Bp }}$	${ }_{4}^{10}$	${ }_{\text {ap }}^{\text {97 }}$	${ }_{\text {st }}^{\text {\％}}$	$\xrightarrow{+0}$	${ }_{\text {¢ }}{ }^{51}$	27	${ }^{\text {Lt }}$	Ot	6ε		88	18
${ }^{\text {П⿵冂 }}$ ER	m65	${ }^{8879}$	2257	！azt	\％／89	¢2m	9¢6）	E6989	\％\％万9	9 9t889	${ }^{88654}$	96519	27679	${ }^{1 / 8897}$	90\％77		8 8／77	$8 \mathrm{CDOf} \mathrm{\%}$
dY	18	OS	SV	05	05	UZ	n）	！N	03	O－	UW	13	\wedge	I！	OS		80	Y
${ }_{\text {chen }}^{\text {9\％}}$	S¢	VE	E¢	\％ร \％	LE	O¢	－6z	${ }_{8 \times \mathrm{N}}^{8 \mathrm{c}}$	$\stackrel{2 z}{4 .}$	${ }_{\text {cle }}$	${ }_{\text {cxic }}$	¢¢	£z	\％z	Iz		02	${ }^{6 L}$
$8{ }^{\text {gregs }}$	छrrse	990＇te	v200	${ }^{98 \mathrm{CBz}}$	${ }^{2093}$												${ }^{\text {mineme }}$	${ }_{\text {chiseme }}$
dV	10	S	d	15	IV												6W	EN
${ }^{81}$	2	91	SL	\％	$\varepsilon{ }^{\text {E }}$												Z	4.
08608	86681	6669	100\％	．çzi	18801												22106	1763
ON	\pm	0	N	3	8												98	17
O2	${ }^{6}$	8	$\stackrel{L}{2}$	9	S												$\stackrel{\square}{7}$	ε
${ }^{2200 \%}$																		6.001
OH																		H
$\stackrel{\square}{\text { uпй }}$																		${ }_{\text {cotara }}$

