

ASSOCIATION OF CHEMISTRY TEACHERS

NATIONAL STANDARD EXAMINATION IN CHEMISTRY 2013-2014

1. Sol.	The number of optically a (A) 4 (B)	active stereoisomers of ta (B*) 2	artaric acid, (HOOC.CHO) (C) 1	H.CHOH.COOH) is (D) 3
~			ly 2 oplically active stered	nsomers.
2.	Which of the following st	ructure is aromatic ?		
		7	×	
	I II	111	IV	
Sol.	(A) Structures I and II (C) Structures II only (B) Only I follows Huckel's ri	ule and aromatic	(B*) Structure I only (D) Structure III only	row
3.	Salicylic acid on treatme (A) 2-bromo-6-hydroxybe (B*) 2,4,6-tribromopheno (C) 2,6-dibromobenzoic a (D) 1.3-dibromo-6-bydro	nt with bromine water wi enzoic acid I acid whenzoic acid	Il give	tome
Sol.	(B) (B)			
	Salicylic acid on treatme	nt with bromine water giv	e 2,4,6-tribromophenol.	
4.	In which of the following (A) $[Fe(H_2O)_3](OH_2)$ (C) $[Ni(CO_4)]$	compounds is the oxidat	ion number of the transiti (B) $[Co(NH_3)_6]Cl_2$ (D) $[Pt(C_2H_4)Cl_3]$	on metal, zero ?
Sol.	(C) $[Ni(CO)_4]$, oxidation num	ber of Ni is zero.	9	
5.	If each of the following s (A) XY	alts has solubility product (B) X_2 Y	ot Ksp = 1×10^{-9} , which or (C) XY ₂	f them is least soluble in water ? (D) $X_{3}Y$
Sol.	(A)	<u> </u>		
	For XY, solubility = $\sqrt{K_{sp}}$	$p = \sqrt{10^{-9}} = 10^{-4.5}$		
	This is the least value.			
6.	A DNA sample stored at ture increasing gradually (A) Phosphodiester bond (C) Hydrogen bond	4°C was removed from th . Which bond of the DNA 1	ne refrigerator and heated A molecule will break first (B) Glycoside linkage (D) Covalent bond	in a hot water bath with tempera- ?
Sol.	(C)			
	It is the weakest bond ar	nong the given.		
7.	Which of the following st $(A) AI(CN)_3$	alts produces the most b (B) $KC_2H_3O_2$	asic solution ? (C) FeCl ₃	(D) KCI
Sol.	(B) Anionic hydrolysis produ i.e. CH ₃ COOK	ices most basic solution		
8.	Which of the following co	ompounds has zero dipol	e moment ?	
Sol.	(A) NH ₃ (C) BF ₃ due to symmetrical	(B) NF ₃ structure	(C) BF ₃	(D) CHCl ₃

Sol.

(C)

Cr³⁺ ion is produced in solution. So green solution.

15	The gas which liberates bromine from a solution	on of KBr is	10110-2013-14
0.1	(A) Cl_2 (B) I_2	$(C) SO_2$	(D) HI
501.	CI_2 is oxidising agent.		
16.	The bond order of NO⁺ ion is		
Sol	(A) 1 (B) 2	(C) 2.5	(D) 3
501.	Bond order of NO ⁺ is 3		
17.	What is NOT true for both cellulose and DNA?		
	(A) Both are long chain polymers(C) Both have glycosidic Linkages	(B*) Both contai (D) Both can br	ins similar monomers eak down by enzymatic hydrolysis
Sol.	(B) Ear callulaça & D. Chucasa is the monomor but	for DNA the monom	partis Dooyuribasa sugar pueloi aside and
	phosphate.		iei is Deoxynbose sugai, nuclei acius anu
18.	An enzyme working at P ^H 4.5 became inactive may be	e when treated with	n a hydrophobic surfactant. The enzyme
	(A) Cytosolic	(B) Extracellula	N N
Sol.	(C ⁻) Peripheral membrane bound (C)	(D) Integral Men	nbrane bound
	Peripheral membrane bound enzyme working surfactant.	at P ^H 4.5 became i	inactive when treated with a hydrophobic
19.	Which of the following molecules cannot show	geometric isomeris	sm?
Sol.	(A) $CH_{3} CH = NOH$ (B*) $(CH_{3})_{2}C = NOH$ (B)	(C) HO– N =N –	-OH (D) CICI
	СН, ОН		
	C = N -does not show Geometrica	al Isomerism.	
20.	Which of the following is most stable?	0	
	(A*) 2, 3 Dimethyl-1,2-butene	(B) 2-Butene	
Sol.	(A)	(D) i Butene	
	It has more alpha H, hence more stabilized by	hyperconjugation.	
21.	RNA forms loop structure because (A) It always contain uracyl instead of thymine		
	(B*) of presence of nearby complementary bas	es	
	(C) all RNAs have to from loop structure to fund (D) they are always single stranded	ction	
Sol.	(B) H-bond is formed is between complementary b	ases.	
22	Which is the strongest evideing agent among	the energies given h	alow?
<i>LL</i> .	(i) \ln^{3+} $E^0 = -1.34V$	(ii) Au ³⁺ E ⁰	= 1.40V
	(III) Hg^{2+} $E^{\circ} = 0.867V$ (A) Cr^{3+}	(ıv) Cr³+ E⁰ (B) Au³+	= - 0.786V
Sol	(C) Hg ²⁺	(D) In ³⁺	
501.	Au ³⁺ is most powerful oxidising agent among g	iven cations.	
	Higher is SRP value, greater is oxidising power	r.	

NSEC-2013-14

23. The kinetics of an enzyme-catalyzed hydrolysis reaction is represented by the following graph, where [S] is the substrate concentration, and v is the rate of reaction :

			[S]	
Sol.	The kinetic course of th (A) First order, zero orde (C) First order, second o (A) Initially reaction is 1 st or	e reaction can be describ er order der & then zero order.	ed as (B) Zero order, first orde (D) Second order, first o	er order
24. Sol.	The number of unpaired (A) 0 (B) Ni ²⁺ : 3d ⁸ $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \uparrow$ No. of unpaired electron	d electrons in Ni ²⁺ is (B) 2 n = 2	(C) 3	
25. Sol.	The colourless ion from (A) Mn ²⁺ (B) Cu ⁺ (No unpaired electro	among the following is (B) Cu ⁺ on)	(C) Cr ³⁺	(D) Fe ²⁺
26. Sol.	The metal carbonyl whit (A) Ni(CO) ₄ (B) $[V(CO)_6]$ has one unpain V : 3d ³ 4s ² or	ch is paramagnetic is (B) V(CO) ₆ red electron $3d^5 = t_{2g}^{-2,2,1}, e_g^{-0,0}$	(C) Cr(CO) ₆	(D) Fe(CO) ₅
27. Sol.	The percentage compo (A*) Dumas method (AB) Both Dumas and Kjelda compound.	sition of nitrogen in an org (B*) Kjeldahl method ahl method are used to es	janic compound can be d (C) Victor's method stabilish percentage com	etermined by (D) Hoffman"s method position of nitrogen in an organic
28. Ans.	High spin complexes ha (A*) sp ³ d ² hybridisation (A)	aving coordination numbe (B) d²sp³ hybridisation	r ' 6 ' are usually formed t (C) sp ³ hybridisation	hrough (D) sp³d hybridisation
29.	The blood red color obta Lassaigne's test is due	ained in the detection of n to	itrogen and sulphur toget	ther in an organic compound in
Sol.	(A) [Fe(CNS)]⁺ (B) In Lassaigne's test the	(B^*) [Fe(CNS) ₂] ⁺ Fe ³⁺ form complex with C	(C) [Fe(CNS)3] [_] NS [_] ion.	(D) [Fe(CNS) ₂] ²⁺
30. Sol.	A protein attached to ca (A) Lipoprotein (D) It is simple fact.	arbohydrate moiety is call (B) Nucleoprotein	ed as (C) Apoprotein	(D*) Glycoprotein

31.	Which of the following a	queous solution has the l	lowest electrical conducta	ance?								
	(A) 0.01M CaCl ₂	(B) 0.01M KNO ₂	(C) 0.01M $CH_{3}COOH$	(D) 0.01M CH_3COCH_3								
Sol.	(D)											
	acetone CH_3COCH_3 is non-electrolyte in aq. medium.											
22	The reddich brown are	formod whon nitric oxido	ic oxidized by air ic									
32.	(A) NO											
Sol.	(A)	$(\mathbf{D})\mathbf{N}_{2}\mathbf{O}_{4}$	$(0) N_2 O_5$	$(D) N_2 O_3$								
	$2NO + O_2 \longrightarrow 2NO_{22}$ (reddish brown gas)											
	2 2(g) (U ,										
33.	The electronic level which	ectronic level which allows the hydrogen atom to absorb, but not emit a photon is										
	(A) 1s	(B) 2s	(C) 2p	(D) 3s								
Sol.	(A) Electron in 4e can abaarb linkt but can't amit											
	Electron in 1s can abso	rb light but can't emit.										
34.	Bell metal is an alloy of	copper and										
•	(A) Tin	(B) Aluminium	(C) Zinc	(D) Nickel								
Sol.	(A)											
	Bell metal : An alloy of the	n & copper.										
35.	Europium (Eu) and Terb	ium (Tb) attain stable 4f ⁷	configuration by exhibiting	g oxidation states of								
Cal	(A) +2 and +4	(B) +3 and +4	(C) + 2 and + 3	(D) +1 and +3								
501.												
	Fu : $[Xe] 4f^{7}6s^{2}$											
36.	Which of the following re	eaction parameters will c	hange due to addition of a	a catalyst								
	(A) Free energy		(B) Only equilibrium									
	(C) Only rate constant (D) Both equilibrium constant and rate cor											
Sol.	(C)											
	Rate constant is increas	sed by catalyst	9									
37.	A plot of 1/[NO_] verses	time for decomposition o	f NO, was found to be line	ear. This means that the								
••••	reaction		2									
	(A) Is zero order with res	spect to [NO ₂]										
	(B) Is first order with res	pect to [NO ₂]										
	(C) Is second order with	respect to [NO ₂]										
Sel	(D) Order cannot be dete	ermined from the informat	tion given									
301.												
	1 v/s time linear s	o 2 nd order reaction										
	$[NO_2]$ Vis time, integral											
	H ₃ C ₁	H₄C, , , ,	:н									
			21 I ₃									
38.	$O_2 N$ $/$ CH_3	$O_2 N $	CH ³									
	LG											
	The carbanion expels a	leaving group LG to yield	an alkene as shown abov	ve by								
	$(A^{*}) E_{1}$ cb mechanism											
	(D) E_1 mechanism (C) E mechanism											
	(D) Such a reaction doe	s not take place										
Sol.	(A)											
	The carbanion intermed	iate is formed only in E_1 cl	b mechanism.									

NSEC-2013-14

- 39. Select the most correct statement among the following :
 - (A) SN¹ mechanism takes place in non-polar solvents
 - (B) SN² mechanism in chiral substrates gives racemic mixtures as products
 - (C*) SN¹ mechanism is encouraged by polar solvents
 - (D) The solvent never influences the mechanism

Sol. (C)

SN¹ reaction proceed through the formation of carbocation intermediate, which is most favored in more polar solent.

- 40. Fehlings solution is
 - (A) AgNO₂ solution + NaOH solution + NH₄OH
 - (B) Alkaline solution of Cupric ion complexed with citrate ion
 - (C*) Copper sulphate + sodium potassium tartarate + NaOH
 - (D) Copper sulphate solution
- Sol. (C)

tertionnorrow Fehlings solution is alkaline solution of CuSO, with rochell salt i.e. sodium potassium tartarate.

Cyclohexene

Product

The correct name of the product obtained is

- (A) cis-1,2-dibromocyclohexane
- (B) cis-1,4-dibromocyclohexane
- (C*) trans-1,2-dibromocyclohexane
- (D) trams-1,4-dibromocyclohexane
- Sol. (C)

Addtion of bromine is anti and the product is trans-1,2-dibromocyclohexane.

- 42. A solution of sodium metal in liquid ammonia is strongly reducing due to the presence of
 - (A) sodium atoms (B) sodium hydride (D) solvated electrons
 - (C) sodium amide
- Sol. (D)
- 43. The number of unpaired electrons in Ni²⁺ ion is 2, therefore its spin multiplicity is
 - (A) 2
 - (B) 1
 - (C) 3
 - (D) 4
- Sol. (C)

$M = 2 \times S + 1$	$S = 2 \times \pm \frac{1}{2}$
= 2 × 1 + 1	= 1
= 3	

- 44. A cold aqueous solution of PbCl, gives golden yellow precipitate on addition of
 - (A) KCI solution
 - (B) KI solution
 - (C) NaCl solution
 - (D) $K_2 SO_4$ solution
- Sol.
- (B) $PbCl_2 + Kl_{(aq)} \longrightarrow Pbl_2 \downarrow + 2Cl^-$ Yellow

45. In the reaction given below :

$$H_{1}C \xrightarrow{C}H_{1} + H_{1}O \xrightarrow{C}H_{1} + H_{2}O \xrightarrow{C}$$

50. Sol.	The chemical formula c (A) 2 CaSO_4 . H ₂ O (A)	f Plaster of Paris is (B) CaSO ₄ .2H ₂ O	(C) 3CaSO ₄ .2H ₂ O	(D) $CaSO_4.H_2O$						
	$CaSO_4 \cdot \frac{1}{2}H_2O$	\Rightarrow 2CaSO ₄ .H ₂ O								
51.	The K_p/K_c ratio for the r 4NH ₃ (g) + 7O ₂ (eaction : (g) 4 NO(g) + 6	5 H ₂ O (g), at 127ºC is							
Sol.	(A) 0.0301 (A) K _n = K _n (RT) ^{∆n}	(B) 0.0831 $\Delta n = -1$	(C) 1.0001	(D) 33.26						
	$\frac{K_{\rm P}}{K_{\rm C}} = \frac{1}{\rm RT} = 0.0301.$									
52. Sol.	Van Arkel method of pu (A) Volatile compound (C) Non-volatile stable c (B)	rification of metals involve compound	es converting the metal to a (B) Volatile unstable compound (D) Non-volatile unstable compound							
53.	Which of the following r (A) Baeyer-Villiger Oxid (C) Fries Rearrangemen	eaction mechanisms doe ation nt	s not involve carbocation (B) Beckman rearranger (D*) Diels-Alder Reactio	e carbocation as an intermediate ? nan rearrangement						
Sol.	(D) Diels Alder reaction is a	concerted reaction in wh	ich neither cation nor anion is formed.							
54.	Which of the following s (A) $-NO_2$ group activate (B*) $-NH_2$ group activate (C) Both $-NO_2$ group as para position. (D) Neither $-NO_2$ group position.	ich of the following statements is correct ? $-NO_2$ group activates the benzene ring for attack of electrophile at ortho and para position. $-NH_2$ group activates the benzene ring for attack of electrophile at ortho and para position. Both $-NO_2$ group as well as $-NH_2$ group activate the benzene ring for attack of electrophile at ortho a position. Neither $-NO_2$ group nor $-NH_2$ group activate the benzene ring for attack of electrophile at ortho and Neither $-NO_2$ group nor $-NH_2$ group activate the benzene ring for attack of electrophile at ortho and Neither $-NO_2$ group nor $-NH_2$ group activate the benzene ring for attack of electrophile at ortho and								
Sol.	(B) $-NO_2$ group is strong eledue to +M effect.	ectron withdrawing due to	–M whereas –NH ₂ group	is strong electron donating group						
55.	Which of the following c (A) CH ₃ CH ₂ NO ₂ (C) PhCOCH ₂ CN	loes not have an active m	ethylene group ? (B) CH ₃ COCH ₂ COCH ₃ (D*) CH ₃ CH ₂ NH ₂							
Sol.	(D) Most appropriate answe	er is D. In CH_3CH_2 – NH_2 th	$\infty = \frac{1}{2} + \frac{1}{2}$	с.						
56. Sol.	CH ₂ =CHCI is monomer (A) Poly styrene (C)	of (B) Natural rubber	(C*) PVC	(D) Nylon-6						
	n $-CH_2=CH \longrightarrow$	$\begin{bmatrix} CI \\ I \\ -CH_2 - CH_{-} \end{bmatrix}_n$ P.V.C.								
57.	A cell membrane acts a (A) Lipids and carbohyc (C) Proteins and Nuclei	is a semi-permeable sele Irates c acids	ctive boundary because in (B) Proteins and carboh (D*) Lipids and proteins	t contains ydrates						
Sol.	(D) It is fact.									

66.	Which of the	following mo	lecules is mo	ost volatile '	?										
	(A*) Salicylal	dehyde			(B) p-nitrophenol										
Sol	(C) p-nydroxybenzoic acid (D) m-hydroxybenzoic acid														
501.	Salicydehyde	e is O-hydrox	ybenzaldehy	de. It is vola	atile as it has ir	ntramolecu	ılar hydrogen bon	nding.							
67.	The isoelectric point of an amino acid is : (A) The pH at which it exists in the acidic form														
	(B) The pH a	t which exist	s in the basic	form											
	(C*) The pH	at which it ex	ists in the Zw	vitterion forr	n										
	(D) The pH w	hich is equal	to its pK _a val	lue											
501.	(c) At PI, the total(+) ion concentration is equal to total (–) ion concentration.														
68.	A gas shows positive Joule-Thomson Effect below its														
	(A) Boyle Ter	nperature			(B) Critical Ter	nperature									
	(C) Inversion	Temperature			(D) Transition	Temperatu	ire								
Sol.	(C)														
69	The following	ı data was red	corded for the	e reaction .											
09.								.0							
	X + Y	γ Υ													
	Set No	[A]	[B]	Rate of	the reaction										
		0.1 M	0.2 M	(001										
		0.1 M	0.2 M	(0.004										
		0.2 M	0.8 M	(0.008	1.0									
	I he order of	the reaction is	S B) 2		(C) 2.5	6	(D) 3								
Sol	(A) 1 (C)	(D) Z		(U) 2.5 (U) 3										
001.	(0) r = ł	Κ [A]^x [B]^γ			\$O`										
	ľ2	$(0.2)^{X}$ (0	0.004)		<u>O</u>										
	<u> </u>	$\left(\frac{1}{0.1}\right) = \left(\frac{1}{0}\right)$	0.001												
	= (2) ^x = 4	K = 2	Car											
	$\frac{r_3}{r_2} =$	$=\left(\frac{0.8}{0.2}\right)^{Y} = \left(\frac{0}{0}\right)^{Y}$	(0.008)												
	- (/	())Y = 2													
	= (4 = (2	$(2)^{2Y} = 2^{1}$	So 2Y =	: 1											
				1											
			Y = -	2											
70.	Which solution	on has the hig	ghest pH ?												
	(A) 0.01 M C				(B) 0.01 M KN										
Sel	(C) 0.01 M CI	H ₃ COOH			(D) 0.01 M CH	3COCH3									
301.		SB1													
71	The minimur	טט n number of I	H ⁺ ions that c	an he relea	ised hv an ami	ino acid is									
	(A*) 1	(B) 2		(C) 3		(D) 4								
Sol.	(A)	(,		. ,		. /								
72.	Which of the	following mo	lecular struct	tures is NO	T possible ?										
Sol.	(A) OF ₂ (C)	(B) SF ₂		(C) OF ₄	(D) SF ₄									

NSEC-2013-14

73. K_p for the reaction given below is 1.36 at 499 K. Which of the following equaitons can be used to calculate K_c for this reaction ?

	for this reaction ?			
	$N_2O_{5(g)} \longrightarrow N_2O_{3(g)} + C$) _{2(g)}		
	(A) Kc = $\frac{[(0.0821) \times (4)]{[1.36]}}{[1.36]}$	99)]	(B) Kc = $\frac{[(1.36) \times (0.08)]{[499]}}{[499]}$	821)]
	(C) Kc = $\frac{[1.36]}{[(0.0821) \times (4)]}$	99)]	(D) Kc = $\frac{[(1.36) \times (499)]}{[0.0821]}$	<u>))]</u>
Sol.	(C) $N_2O_5(g) \longrightarrow N_2C$	$O_{3}(g) + O_{2}(g)$, $K_{p} = 1.36$		
	$K_{c} = \frac{K_{P}}{(RT)^{1}} = \frac{1.36}{0.0821 \times 4}$	199		
74.	A 55-kDa protein was a present in the solution	acid hydrolysed to obtain a ?	a mixture of amino acids.	. How many amino acids could be
Sol.	(A) 550 (B)	(B*) 500	(C) 1000	(D) 1100
	37-kDa is equivalent to	333 unit, hence 55-kDa is	s equivalent to approx 50	00 units.
75.	Which of the following ((A) 2,4-dihydroxyacetor (C) 3,4-dicyanophenol	phenols is most soluble in phenone	aqueous sodium bicarb (B) p-cyanophenol (D*) 2,4,6-tricyanopher	onate ? Nol
Sol.	(D)			2
76.	2,4,6-tricyanophenol is 6.24 g of ethanol are va ethanol ? (A) 43.42 kJ	most acidic. It readily form porized by supplying 5.89 (B) 47.0 kJ	n soluble sodium salt an kJ of heat energy. What (C) 21.75 kJ	d evolves CO ₂ gas. is the enthalpy of vapourisation of (D) 435.0 kJ
Sol.	(A)	$\frac{5.89}{(6.24)}$	Ó	
	Enthalpy of vapourisati	on, $\Delta H_{vap} = \left(\frac{0.24}{46}\right) \text{ kJ/m}$	ol = 43.42 kJ/mol	
77.	How many hyperconjug	pative structures are possi	ible in the following carbo	ocation?
Sol.	(A) 1 (D)	(B) 3	(C) 5	(D*) 6
	I here are only 6 α [H+I	J+1] atoms.		
78. Sol	The ions which give bla (A) Al ³⁺ and Ni ²⁺	ack precipitates on passin (B) Ni²+ and Co²+	g H ₂ S gas in acidic medi (C) Cu ²⁺ and Bi ³⁺	um are (D) Zn ²⁺ and Mn ²⁺
301.	$\underbrace{Cu^{2+} \text{ or } Bi^{3+}}_{2^{nd} \text{Group cation}} - \underbrace{H_2S/I}_{H_2S/I}$	H ⁺ CuS↓ + Bi ₂ S ₃ —→ Black Black		

morrow

79. Which of the following is not a resonating structure for the phenoxide ion ?

Sol. (

-ve change is never delocalized on the meta positon.

80. Which of the following statements is true for the reaction given below ?

 $H_{3C} = C \qquad H_{3} \qquad \qquad \text{alkaline KMnO}_{4} \qquad P$

(A*) P is a meso compound 2,3-butanediol formed by syn addition.

(B) P is a meso compound 2,3-butanediol formed by anti addition.

(C) P is a racemic mixture of d- and I-2,3--butanediol formed by anti addition.

(D) P is a racemic mixture of d- and I- 2,3-- butanediol formed by syn addition.

Sol. (A)

cis-2-Butene undergoes hydroxylation by syn addition forming meso product.

* * Act	*Lanth	633	---	87	132.31	Cs	55	85.438	Rb	37	SED'AE.	ス	19	22.990	Na	- 11	E.9/1	С.	3		1
nide se	nanide	124	Ra	88	19.3	Ва	56	87.62	Ś	38	40.078	Ca	20	24.305	Mg	12	9.0122	Be	4		
eries	series		*	89-102		*	57-70					ę.								-	
A B B	S7 S7	[202]	, 5	103	174.97	E	T1	88.906	~	39	14,956	Sc	21	sandlin							
	Se Saura		₽ ₽	104	178,49	Ŧ	nstrium 72	91.224	Ņ	2ireunium 40	41.831	-	22								
Pa	praseodymium 59 Pr	EVE	Db	105	100.85	Та	73	92.908	NP	11cblum	50.942	<	23	tion dim							
144.24 Internation	Nd 80	500	S S S	106	183.84	٤	TA	95.94	No	1711/11/11/11/11/11/11/11/11/11/11/11/11	b1.996	Q	24	abaaiim							
		107	Bh	13	186.21	Re	75	1981	7	43	54,938	Mn	25								
		CO3	SH SH	108	190,23	SO	озтип 76	101.37	Ru	rutherium	50,845	Fe	26								
Americium 95		003	M	109	192.22	۲	77	102.61	Rh	45	58.953	60	27	-							
Cm %	Gd gadolnum		Uun	110	195.08	Pt	78	106.42	Pd	46	58.693	Z	28	-							
BR	D B	272	Uuu	111	196 97	Pu	64	107 87	Aq	silver 47	E3.546	2	29								
	Dy 56		duu	112	200.59	Hg	80	112.41	Cd	cadmiur 48	E C	Zn	30								
	HO ST	L			204.39	Ⅎ	s1	114.82	5	49	65/73	Ga	1 31	26,082	≥	auminium 13	10811	ω	S poron		
Fallen 181.28		607	Dud	114	207.2	РЬ	89 82	118.7 ->	Sn	5	12.61	Ge	32	28.086	<u></u>	14	12.01.	ი	6		
101 Mad	Hand the state				208 98	B	83	121 76	S	arthuny 51	14 972	As	33	30.974	ס	phosphorus 15	14.007	z	ntrogen 7		
102 In 102	Yby Yterbun				[209]	Po	84	127,60	Te	lelurlum 52	18.58	Se	34 searum	32.085	S	16	15.999	0	B		
I					[210	Ą	astatine	126,90		53	/9.904	Br	35	35453	<u>0</u>	chiorine 17	18,999	П	fluorine 9		
					[222]	R	86 Nober	131.29	Xe	Stanur	DR ER	ፍ	36	30.2/18	Ą	argon	20.180	Ne	10	+ He	2

- K Resonance